1
|
Mao Y, Feng J. Phosphatase activity-based PPM1K: a key player in the regulation of mitochondrial function and its multifaceted impact in diseases. Mol Cell Biochem 2024:10.1007/s11010-024-05188-6. [PMID: 39695034 DOI: 10.1007/s11010-024-05188-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
PPM1K is a significant metal-dependent phosphatase predominantly located in the mitochondrial matrix, where it plays a crucial role in the metabolism of branched-chain amino acids (BCAAs). It is implicated in cellular function and development across various tissues and is associated with diseases like Alzheimer's, cardiomyopathy, and maple syrup urine disease (MSUD). This article reviews PPM1K's impact on mitochondrial function and cellular metabolism, as well as its role in disease progression. The regulation of PPM1K expression and activity by various factors is complex and highlights its therapeutic potential. PPM1K's dysfunction can lead to the accumulation of BCAAs and the excessive opening of the mitochondrial permeability transition pore (MPTP), disrupting physiological metabolism and function. It also regulates the degradation of BCAAs by acting as a specific phosphatase for the E1α subunit of the BCKD complex. Outside the mitochondria, PPM1K suppresses de novo fatty acid synthesis and promotes fatty acid oxidation by dephosphorylating ACL. Furthermore, PPM1K has anti-inflammatory effects and modulates immune cell infiltration in tumor tissues. The expression and activity of PPM1K are influenced by factors such as BCAA concentration, fructose intake, and drug treatments, making it a promising target for therapeutic applications and further basic research.
Collapse
Affiliation(s)
- Yuanling Mao
- Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jing Feng
- Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
2
|
Kazan HH, Bulgay C, Zorba E, Dalip M, Ceylan HI, Semenova EA, Larin AK, Kulemin NA, Generozov EV, Ahmetov II, Cerit M. Exploring the relationship between caffeine metabolism-related CYP1A2 rs762551 polymorphism and team sport athlete status and training adaptations. Mol Biol Rep 2024; 51:841. [PMID: 39042267 PMCID: PMC11266271 DOI: 10.1007/s11033-024-09800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND This study aimed to achieve a dual objective: to compare the frequencies of CYP1A2 rs762551 genotypes between team sport athletes and a control group, and to determine the association between the rs762551 polymorphism and changes in physical performance after a six-week training program among elite basketball players. METHODS The study encompassed an analysis of 504 individuals, comprising 320 athletes and 184 controls. For the Turkish cohort, DNA was isolated using the buccal swab method, and genotyping was conducted using the KASP technique. Performance assessments included the Yo-Yo IR2 and 30 m sprint tests. For Russian participants, DNA samples were extracted from peripheral blood, a commercial kit was used for DNA extraction, and genotyping of the rs762551 polymorphism was conducted using DNA microarray. RESULT Notably, a statistically significant linear decline in the prevalence of the CC genotype was observed with ascending levels of athletic achievement within team sports (sub-elite: 18.0%, elite: 8.2%, highly elite: 0%; p = 0.001). Additionally, the CA genotype was the most prevalent genotype in the highly elite group compared to controls (80.0% vs. 45.1%, p = 0.048). Furthermore, statistically significant improvements in Yo-Yo IR2 performance were noted exclusively among basketball players harboring the CA genotype (p = 0.048). CONCLUSIONS The study's findings indicate that the rs762551 CC genotype is a disadvantage in elite team sports, whereas the CA genotype provides an advantage in basketball performance.
Collapse
Affiliation(s)
- Hasan H Kazan
- Department of Medical Biology, Gulhane Faculty of Medicine, University of Health Sciences, Ankara, 06010, Türkiye
| | - Celal Bulgay
- Sports Science Faculty, Bingol University, Bingol, 12000, Türkiye
| | - Ercan Zorba
- Faculty Faculty of Sport Sciences, Mugla Sıtkı Kocman University, Muğla, 48000, Türkiye
| | - Metin Dalip
- Faculty of Physical Culture and Health, University in Tetovo, Tetova, 1200, Republic of North Macedonia
| | - Halil I Ceylan
- Physical Education and Sports Teaching Department, Kazim Karabekir Faculty of Education, Ataturk University, Erzurum, 25240, Türkiye
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, 420138, Russia
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Nikolay A Kulemin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Ildus I Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, 420012, Russia.
- Department of Physical Education, Plekhanov Russian University of Economics, Moscow, 115093, Russia.
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 5AF, UK.
| | - Mesut Cerit
- Sports Science Faculty, Lokman Hekim University, Ankara, 06510, Türkiye
| |
Collapse
|
3
|
Guilherme JPLF, Semenova EA, Kikuchi N, Homma H, Kozuma A, Saito M, Zempo H, Matsumoto S, Kobatake N, Nakazato K, Okamoto T, John G, Yusupov RA, Larin AK, Kulemin NA, Gazizov IM, Generozov EV, Ahmetov II. Identification of Genomic Predictors of Muscle Fiber Size. Cells 2024; 13:1212. [PMID: 39056794 PMCID: PMC11274365 DOI: 10.3390/cells13141212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The greater muscle fiber cross-sectional area (CSA) is associated with greater skeletal muscle mass and strength, whereas muscle fiber atrophy is considered a major feature of sarcopenia. Muscle fiber size is a polygenic trait influenced by both environmental and genetic factors. However, the genetic variants underlying inter-individual differences in muscle fiber size remain largely unknown. The aim of our study was to determine whether 1535 genetic variants previously identified in a genome-wide association study of appendicular lean mass are associated with the CSA of fast-twitch muscle fibers (which better predict muscle strength) in the m. vastus lateralis of 148 physically active individuals (19 power-trained and 28 endurance-trained females, age 28.0 ± 1.1; 28 power-trained and 73 endurance-trained males, age 31.1 ± 0.8). Fifty-seven single-nucleotide polymorphisms (SNPs) were identified as having an association with muscle fiber size (p < 0.05). Of these 57 SNPs, 31 variants were also associated with handgrip strength in the UK Biobank cohort (n = 359,729). Furthermore, using East Asian and East European athletic (n = 731) and non-athletic (n = 515) cohorts, we identified 16 SNPs associated with athlete statuses (sprinter, wrestler, strength, and speed-strength athlete) and weightlifting performance. All SNPs had the same direction of association, i.e., the lean mass-increasing allele was positively associated with the CSA of muscle fibers, handgrip strength, weightlifting performance, and power athlete status. In conclusion, we identified 57 genetic variants associated with both appendicular lean mass and fast-twitch muscle fiber size of m. vastus lateralis that may, in part, contribute to a greater predisposition to power sports.
Collapse
Affiliation(s)
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia (E.V.G.)
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Naoki Kikuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8581, Japan (S.M.); (K.N.)
| | - Hiroki Homma
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8581, Japan (S.M.); (K.N.)
| | - Ayumu Kozuma
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8581, Japan (S.M.); (K.N.)
| | - Mika Saito
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8581, Japan (S.M.); (K.N.)
- Graduate School of Health and Sports Science, Juntendo University, Chiba 270-1695, Japan
| | - Hirofumi Zempo
- Faculty of Health and Nutrition, Tokyo Seiei College, Tokyo 124-8530, Japan
| | - Shingo Matsumoto
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8581, Japan (S.M.); (K.N.)
| | - Naoyuki Kobatake
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8581, Japan (S.M.); (K.N.)
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8581, Japan (S.M.); (K.N.)
| | - Takanobu Okamoto
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo 158-8581, Japan (S.M.); (K.N.)
| | - George John
- Transform Specialist Medical Centre, Dubai 119190, United Arab Emirates
| | - Rinat A. Yusupov
- Department of Physical Culture and Sport, Kazan National Research Technical University Named after A.N. Tupolev-KAI, 420111 Kazan, Russia
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia (E.V.G.)
| | - Nikolay A. Kulemin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia (E.V.G.)
| | - Ilnaz M. Gazizov
- Department of Human Anatomy, Kazan State Medical University, 420012 Kazan, Russia;
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia (E.V.G.)
| | - Ildus I. Ahmetov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia (E.V.G.)
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St. Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
4
|
Rahimi MR, Semenova EA, John G, Fallah F, Larin AK, Generozov EV, Ahmetov II. Effect of ADORA2A Gene Polymorphism and Acute Caffeine Supplementation on Hormonal Response to Resistance Exercise: A Double-Blind, Crossover, Placebo-Controlled Study. Nutrients 2024; 16:1803. [PMID: 38931158 PMCID: PMC11206868 DOI: 10.3390/nu16121803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Previous studies have reported that TT genotype carriers of the adenosine A2a receptor (ADORA2A) gene rs5751876 polymorphism have better ergogenic and anti-inflammatory responses to caffeine intake compared to C allele carriers. The aim of the present study was twofold: (1) to investigate the association of the ADORA2A rs5751876 polymorphism with acute caffeine supplementation on hormonal (growth hormone and testosterone) response to resistance exercise (RE); (2) to examine the relationship between the rs5751876 polymorphism and the resting levels of growth hormone and testosterone in athletes who are light caffeine consumers. A double-blind, crossover, placebo-controlled study involving 30 resistance-trained men (age 21.7 ± 4.1) was conducted to assess the impact of caffeine supplementation on serum growth hormone (GH) and testosterone (TS) levels before, immediately after, and 15 min post-RE. One hour before engaging in resistance exercise, subjects were randomly administered 6 mg of caffeine per kg of body mass or a placebo (maltodextrin). After a 7-day washout period, the same protocol was repeated. Resting testosterone and growth hormone levels were examined in the sera of 94 elite athletes (31 females, age 21.4 ± 2.8; 63 males, age 22.9 ± 3.8). Caffeine consumption led to significantly greater increases in GH and TS in men with the TT genotype compared to C allele carriers. Furthermore, in the group of athletes, carriers of the TT genotype had significantly higher testosterone (p = 0.0125) and growth hormone (p = 0.0365) levels compared to C allele carriers. In conclusion, the ADORA2A gene rs5751876 polymorphism may modify the effect of caffeine intake on the hormonal response to exercise.
Collapse
Affiliation(s)
| | - Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - George John
- Transform Specialist Medical Centre, Dubai 119190, United Arab Emirates
| | - Fateme Fallah
- Department of Exercise Physiology, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Andrey K. Larin
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Edward V. Generozov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Ildus I. Ahmetov
- Department of Molecular Biology and Genetics, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St. Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
5
|
Ahmetov II, John G, Semenova EA, Hall ECR. Genomic predictors of physical activity and athletic performance. ADVANCES IN GENETICS 2024; 111:311-408. [PMID: 38908902 DOI: 10.1016/bs.adgen.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Physical activity and athletic performance are complex phenotypes influenced by environmental and genetic factors. Recent advances in lifestyle and behavioral genomics led to the discovery of dozens of DNA polymorphisms (variants) associated with physical activity and allowed to use them as genetic instruments in Mendelian randomization studies for identifying the causal links between physical activity and health outcomes. On the other hand, exercise and sports genomics studies are focused on the search for genetic variants associated with athlete status, sports injuries and individual responses to training and supplement use. In this review, the findings of studies investigating genetic markers and their associations with physical activity and athlete status are reported. As of the end of September 2023, a total of 149 variants have been associated with various physical activity traits (of which 42 variants are genome-wide significant) and 253 variants have been linked to athlete status (115 endurance-related, 96 power-related, and 42 strength-related).
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom; Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, St. Petersburg, Russia; Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, Kazan, Russia; Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.
| | - George John
- Transform Specialist Medical Centre, Dubai, United Arab Emirates
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia; Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, Kazan, Russia
| | - Elliott C R Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
6
|
Semenova EA, Hall ECR, Ahmetov II. Genes and Athletic Performance: The 2023 Update. Genes (Basel) 2023; 14:1235. [PMID: 37372415 PMCID: PMC10298527 DOI: 10.3390/genes14061235] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Phenotypes of athletic performance and exercise capacity are complex traits influenced by both genetic and environmental factors. This update on the panel of genetic markers (DNA polymorphisms) associated with athlete status summarises recent advances in sports genomics research, including findings from candidate gene and genome-wide association (GWAS) studies, meta-analyses, and findings involving larger-scale initiatives such as the UK Biobank. As of the end of May 2023, a total of 251 DNA polymorphisms have been associated with athlete status, of which 128 genetic markers were positively associated with athlete status in at least two studies (41 endurance-related, 45 power-related, and 42 strength-related). The most promising genetic markers include the AMPD1 rs17602729 C, CDKN1A rs236448 A, HFE rs1799945 G, MYBPC3 rs1052373 G, NFIA-AS2 rs1572312 C, PPARA rs4253778 G, and PPARGC1A rs8192678 G alleles for endurance; ACTN3 rs1815739 C, AMPD1 rs17602729 C, CDKN1A rs236448 C, CPNE5 rs3213537 G, GALNTL6 rs558129 T, IGF2 rs680 G, IGSF3 rs699785 A, NOS3 rs2070744 T, and TRHR rs7832552 T alleles for power; and ACTN3 rs1815739 C, AR ≥21 CAG repeats, LRPPRC rs10186876 A, MMS22L rs9320823 T, PHACTR1 rs6905419 C, and PPARG rs1801282 G alleles for strength. It should be appreciated, however, that elite performance still cannot be predicted well using only genetic testing.
Collapse
Affiliation(s)
- Ekaterina A. Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Research Institute of Physical Culture and Sport, Volga Region State University of Physical Culture, Sport and Tourism, 420138 Kazan, Russia
| | - Elliott C. R. Hall
- Faculty of Health Sciences and Sport, University of Stirling, Stirling FK9 4UA, UK
| | - Ildus I. Ahmetov
- Laboratory of Genetics of Aging and Longevity, Kazan State Medical University, 420012 Kazan, Russia
- Sports Genetics Laboratory, St Petersburg Research Institute of Physical Culture, 191040 St. Petersburg, Russia
- Department of Physical Education, Plekhanov Russian University of Economics, 115093 Moscow, Russia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 5AF, UK
| |
Collapse
|
7
|
Ozcelik F, Arslan S, Ozguc Caliskan B, Kardas F, Ozkul Y, Dundar M. PPM1K defects cause mild maple syrup urine disease: The second case in the literature. Am J Med Genet A 2023; 191:1360-1365. [PMID: 36706222 DOI: 10.1002/ajmg.a.63129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/29/2023]
Abstract
Maple syrup urine disease (MSUD) is an inborn error of metabolism caused by the insufficient catabolism of branched-chain amino acids. BCKDHA, BCKDHB, DBT, and DLD encode the subunits of the branched-chain α-ketoacid dehydrogenase complex, which is responsible for the catabolism of these amino acids. Biallelic pathogenic variants in BCKDHA, BCKDHB, or DBT are characteristic of MSUD. In addition, a patient with a PPM1K defect was previously reported. PPM1K dephosphorylates and activates the enzyme complex. We report a patient with MSUD with mild findings and elevated BCAA levels carrying a novel homozygous start-loss variant in PPM1K. Our study offers further evidence that PPM1K variants cause mild MSUD.
Collapse
Affiliation(s)
- Firat Ozcelik
- Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Sezai Arslan
- Division of Nutrition and Metabolism, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | | | - Fatih Kardas
- Division of Nutrition and Metabolism, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Munis Dundar
- Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| |
Collapse
|
8
|
Rahimi MR, Semenova EA, Larin AK, Kulemin NA, Generozov EV, Łubkowska B, Ahmetov II, Golpasandi H. The ADORA2A TT Genotype Is Associated with Anti-Inflammatory Effects of Caffeine in Response to Resistance Exercise and Habitual Coffee Intake. Nutrients 2023; 15:nu15071634. [PMID: 37049474 PMCID: PMC10097079 DOI: 10.3390/nu15071634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Caffeine is an adenosine A2A receptor (ADORA2A) antagonist with ergogenic and anti-inflammatory effects. Previous studies have reported that the ADORA2A gene regulates glutamate metabolism and immune responses, with the ADORA2A rs5751876 TT genotype (with high sensitivity to caffeine) showing larger ergogenic effect following caffeine ingestion. We therefore hypothesized that the TT genotype would be associated with greater anti-inflammatory effects of caffeine in response to exercise, and with higher coffee intake in physically active individuals. The aim of the present study was twofold: (1) to investigate the association of the ADORA2A variant with the anti-inflammatory effects of caffeine in response to intense resistance exercise (RE), and (2) to analyze the association of the rs5751876 with coffee intake in physically active individuals (n = 134). Fifteen resistance-trained athletes participated in a randomized, double-blind, placebo-controlled cross-over study, where they consumed 6 mg/kg of caffeine or placebo one hour prior to performing an RE protocol. Blood samples were taken immediately from the arterial vein before, immediately after, and 15 min after RE for the analysis of inflammatory markers myeloperoxidase (MPO) and acetylcholinesterase (AChE). We found that the ADORA2A TT genotype carriers experienced lower exercise-induced inflammatory responses (p < 0.05 for AchE) when compared to the C allele carriers (i.e., CC/CT) one hour following the ingestion of caffeine. Furthermore, the ADORA2A TT genotype was positively associated with coffee intake (p = 0.0143; irrespective of CYP1A2 rs762551 polymorphism). In conclusion, we found that the ADORA2A gene polymorphism is associated with anti-inflammatory effects of caffeine in response to resistance exercise, as well as with habitual coffee intake in physically active individuals.
Collapse
|
9
|
Identification and Characterization of Genomic Predictors of Sarcopenia and Sarcopenic Obesity Using UK Biobank Data. Nutrients 2023; 15:nu15030758. [PMID: 36771461 PMCID: PMC9920138 DOI: 10.3390/nu15030758] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The substantial decline in skeletal muscle mass, strength, and gait speed is a sign of severe sarcopenia, which may partly depend on genetic risk factors. So far, hundreds of genome-wide significant single nucleotide polymorphisms (SNPs) associated with handgrip strength, lean mass and walking pace have been identified in the UK Biobank cohort; however, their pleiotropic effects on all three phenotypes have not been investigated. By combining summary statistics of genome-wide association studies (GWAS) of handgrip strength, lean mass and walking pace, we have identified 78 independent SNPs (from 73 loci) associated with all three traits with consistent effect directions. Of the 78 SNPs, 55 polymorphisms were also associated with body fat percentage and 25 polymorphisms with type 2 diabetes (T2D), indicating that sarcopenia, obesity and T2D share many common risk alleles. Follow-up bioinformatic analysis revealed that sarcopenia risk alleles were associated with tiredness, falls in the last year, neuroticism, alcohol intake frequency, smoking, time spent watching television, higher salt, white bread, and processed meat intake; whereas protective alleles were positively associated with bone mineral density, serum testosterone, IGF1, and 25-hydroxyvitamin D levels, height, intelligence, cognitive performance, educational attainment, income, physical activity, ground coffee drinking and healthier diet (muesli, cereal, wholemeal or wholegrain bread, potassium, magnesium, cheese, oily fish, protein, water, fruit, and vegetable intake). Furthermore, the literature data suggest that single-bout resistance exercise may induce significant changes in the expression of 26 of the 73 implicated genes in m. vastus lateralis, which may partly explain beneficial effects of strength training in the prevention and treatment of sarcopenia. In conclusion, we have identified and characterized 78 SNPs associated with sarcopenia and 55 SNPs with sarcopenic obesity in European-ancestry individuals from the UK Biobank.
Collapse
|