1
|
Murthy MC, Banerjee B, Shetty M, Mariappan M, Sekhsaria A. A retrospective study of the yield of next-generation sequencing in the diagnosis of developmental and epileptic encephalopathies and epileptic encephalopathies in 0-12 years aged children at a single tertiary care hospital in South India. Epileptic Disord 2024; 26:609-625. [PMID: 38923778 DOI: 10.1002/epd2.20254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Studies on the genetic yield of developmental and epileptic encephalopathy and Epileptic encephalopathies using next-generation sequencing techniques are sparse from the Indian subcontinent. Hence, the study was conducted to assess the yield of genetic testing and the proportion of children where a positive genetic yield influenced treatment decisions. METHODS In this retrospective observational study, electronic medical records of children (0-12 years) with suspected genetic epilepsy who underwent genetic testing using whole exome sequencing, focused exome sequencing and epilepsy gene panels were retrieved. Genetic yield was ascertained based on the detection of pathogenic and likely pathogenic variants. RESULTS A total of 100 patients with epilepsy underwent genetic testing. A yield of 53.8% (42/78) was obtained. Pathogenic variants were identified in 18 (42.8%) cases and likely pathogenic variants in 24 (57.1%) cases. Yield was 66.6% each through whole exome sequencing, focused exome sequencing and 40% through Epilepsy gene panels (p = .07). Yield was not statistically significant across different age groups (p = .2). It was however found to significantly vary across different epilepsy syndromes with maximum yield in Epilepsy in infancy with migrating focal seizures in 2 (100%), followed by developmental and epileptic encephalopathy unspecified in 14 (77.7%), Dravet syndrome in 14 (60.8%), early infantile developmental and epileptic encephalopathy in 3 (60%), infantile epileptic spasm syndrome in 5 (35.7%), and other epileptic encephalopathies in 4 (30.7%) cases (p = .04). After genetic diagnosis and drug optimization, drug-refractory proportion reduced from 73.8% to 45.3%. About half of the cases achieved seizure control. SIGNIFICANCE A reasonably high yield of 53.8% was obtained irrespective of the choice of panel or exome or age group using next-generation sequencing-based techniques. Yield was however higher in certain epilepsy syndromes and low in Infantile epileptic spasms syndrome. A specific genetic diagnosis facilitated tailored treatment leading to seizure freedom in 28.6% and marked seizure reduction in 54.7% cases.
Collapse
Affiliation(s)
- Manasa C Murthy
- Division of Pediatric Neurology, Department of Pediatrics, Manipal Hospital, Bengaluru, India
| | - Bidisha Banerjee
- Division of Pediatric Neurology, Department of Pediatrics, Manipal Hospital, Bengaluru, India
| | - Mitesh Shetty
- Department of Medical Genetics, Manipal Hospital, Bengaluru, India
| | | | | |
Collapse
|
2
|
Yang F, Begemann A, Reichhart N, Haeckel A, Steindl K, Schellenberger E, Sturm RF, Barth M, Bassani S, Boonsawat P, Courtin T, Delobel B, Gunning B, Hardies K, Jennesson M, Legoff L, Linnankivi T, Prouteau C, Smal N, Spodenkiewicz M, Toelle SP, Van Gassen K, Van Paesschen W, Verbeek N, Ziegler A, Zweier M, Horn AHC, Sticht H, Lerche H, Weckhuysen S, Strauß O, Rauch A. Missense variants in ANO4 cause sporadic encephalopathic or familial epilepsy with evidence for a dominant-negative effect. Am J Hum Genet 2024; 111:1184-1205. [PMID: 38744284 PMCID: PMC11179416 DOI: 10.1016/j.ajhg.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Anoctamins are a family of Ca2+-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+ binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patch-clamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease.
Collapse
Affiliation(s)
- Fang Yang
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Anais Begemann
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Nadine Reichhart
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Akvile Haeckel
- Institute for Radiology and Children's Radiology, Charité-Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Eyk Schellenberger
- Institute for Radiology and Children's Radiology, Charité-Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Ronja Fini Sturm
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Magalie Barth
- University Hospital of Angers, Department of Genetics, Angers, France
| | - Sissy Bassani
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Paranchai Boonsawat
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Thomas Courtin
- Sorbonne Université, INSERM, CNRS, Institut du Cerveau - Paris Brain Institute - ICM, 75013 Paris, France; Hôpital Pitié-Salpêtrière, DMU BioGe'M, AP-HP, 75013 Paris, France
| | - Bruno Delobel
- Service de Cytogénétique, GH de l'Institut Catholique de Lille, Hopital Saint Vincent de Paul, Lille, France
| | | | - Katia Hardies
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerp, Belgium
| | | | - Louis Legoff
- University Hospital of Angers, Department of Genetics, Angers, France
| | - Tarja Linnankivi
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland; Department of Pediatric Neurology and Pediatric Research Center, New Children's Hospital, Helsinki University Hospital and University of Helsinki, 00029 HUS Helsinki, Finland
| | - Clément Prouteau
- University Hospital of Angers, Department of Genetics, Angers, France
| | - Noor Smal
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerp, Belgium
| | - Marta Spodenkiewicz
- Department of Genetics, La Réunion University Hospital, Saint-Pierre, France
| | - Sandra P Toelle
- Department of Pediatric Neurology, Children's University Hospital Zurich, Zurich, Switzerland
| | - Koen Van Gassen
- University Medical Center Utrecht, Department of Genetics, Utrecht, the Netherlands
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven, and Neurology Department, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Nienke Verbeek
- University Medical Center Utrecht, Department of Genetics, Utrecht, the Netherlands
| | - Alban Ziegler
- University Hospital of Angers, Department of Genetics, Angers, France
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland
| | - Anselm H C Horn
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland; Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerp, Belgium; Department of Neurology, Antwerp University Hospital, Antwerp, Belgium; Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, 2610 Antwerp, Belgium
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, the Berlin Institute of Health, Berlin, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren-Zurich, Switzerland; Children's University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Thompson MD. Innovations in Phenotyping and Diagnostics Create Opportunities for Improved Treatment and Genetic Counseling for Rare Diseases. Genes (Basel) 2024; 15:715. [PMID: 38927651 PMCID: PMC11203049 DOI: 10.3390/genes15060715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Genetic counseling and treatment options for rare developmental disabilities (DDs) have been revolutionized by the opportunities made possible by using massively parallel sequencing for diagnostic purposes [...].
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
4
|
Shimojima Yamamoto K, Yoshimura A, Yamamoto T. Biallelic KCTD3 nonsense variant derived from paternal uniparental isodisomy of chromosome 1 in a patient with developmental epileptic encephalopathy and distinctive features. Hum Genome Var 2023; 10:22. [PMID: 37550298 PMCID: PMC10406933 DOI: 10.1038/s41439-023-00250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
A biallelic nonsense variant of the potassium channel tetramerization domain-containing protein 3 gene (KCTD3) [c.1192C>T; p.R398*] was identified in a patient with developmental epileptic encephalopathy with distinctive features and brain structural abnormalities. The patient showed isodisomy of chromosome 1, where KCTD3 is located, and the father was heterozygous for the same variant. Based on these findings, paternal uniparental disomy was considered to cause the biallelic involvement of KCTD3.
Collapse
Affiliation(s)
- Keiko Shimojima Yamamoto
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Ayumi Yoshimura
- Department of Pediatrics, Seirei Mikatahara General Hospital, Hamamatsu, 433-8558, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.
| |
Collapse
|
5
|
Henry OJ, Stödberg T, Båtelson S, Rasi C, Stranneheim H, Wedell A. Individualised human phenotype ontology gene panels improve clinical whole exome and genome sequencing analytical efficacy in a cohort of developmental and epileptic encephalopathies. Mol Genet Genomic Med 2023; 11:e2167. [PMID: 36967109 PMCID: PMC10337286 DOI: 10.1002/mgg3.2167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND The majority of genetic epilepsies remain unsolved in terms of specific genotype. Phenotype-based genomic analyses have shown potential to strengthen genomic analysis in various ways, including improving analytical efficacy. METHODS We have tested a standardised phenotyping method termed 'Phenomodels' for integrating deep-phenotyping information with our in-house developed clinical whole exome/genome sequencing analytical pipeline. Phenomodels includes a user-friendly epilepsy phenotyping template and an objective measure for selecting which template terms to include in individualised Human Phenotype Ontology (HPO) gene panels. In a pilot study of 38 previously solved cases of developmental and epileptic encephalopathies, we compared the sensitivity and specificity of the individualised HPO gene panels with the clinical epilepsy gene panel. RESULTS The Phenomodels template showed high sensitivity for capturing relevant phenotypic information, where 37/38 individuals' HPO gene panels included the causative gene. The HPO gene panels also had far fewer variants to assess than the epilepsy gene panel. CONCLUSION We have demonstrated a viable approach for incorporating standardised phenotype information into clinical genomic analyses, which may enable more efficient analysis.
Collapse
Affiliation(s)
- Olivia J. Henry
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Tommy Stödberg
- Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
- Department of Pediatric NeurologyKarolinska University HospitalStockholmSweden
| | - Sofia Båtelson
- Department of Pediatric NeurologyKarolinska University HospitalStockholmSweden
| | - Chiara Rasi
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Henrik Stranneheim
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetStockholmSweden
- Centre for Inherited Metabolic DiseasesKarolinska University HospitalStockholmSweden
| | - Anna Wedell
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Centre for Inherited Metabolic DiseasesKarolinska University HospitalStockholmSweden
| |
Collapse
|
6
|
Di Stazio M, Zanus C, Faletra F, Pesaresi A, Ziccardi I, Morgan A, Girotto G, Costa P, Carrozzi M, d’Adamo AP, Musante L. Haploinsufficiency as a Foreground Pathomechanism of Poirer-Bienvenu Syndrome and Novel Insights Underlying the Phenotypic Continuum of CSNK2B-Associated Disorders. Genes (Basel) 2023; 14:genes14020250. [PMID: 36833176 PMCID: PMC9957394 DOI: 10.3390/genes14020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
CSNK2B encodes for the regulatory subunit of the casein kinase II, a serine/threonine kinase that is highly expressed in the brain and implicated in development, neuritogenesis, synaptic transmission and plasticity. De novo variants in this gene have been identified as the cause of the Poirier-Bienvenu Neurodevelopmental Syndrome (POBINDS) characterized by seizures and variably impaired intellectual development. More than sixty mutations have been described so far. However, data clarifying their functional impact and the possible pathomechanism are still scarce. Recently, a subset of CSNK2B missense variants affecting the Asp32 in the KEN box-like domain were proposed as the cause of a new intellectual disability-craniodigital syndrome (IDCS). In this study, we combined predictive functional and structural analysis and in vitro experiments to investigate the effect of two CSNK2B mutations, p.Leu39Arg and p.Met132LeufsTer110, identified by WES in two children with POBINDS. Our data prove that loss of the CK2beta protein, due to the instability of mutant CSNK2B mRNA and protein, resulting in a reduced amount of CK2 complex and affecting its kinase activity, may underlie the POBINDS phenotype. In addition, the deep reverse phenotyping of the patient carrying p.Leu39Arg, with an analysis of the available literature for individuals with either POBINDS or IDCS and a mutation in the KEN box-like motif, might suggest the existence of a continuous spectrum of CSNK2B-associated phenotypes rather than a sharp distinction between them.
Collapse
Affiliation(s)
- Mariateresa Di Stazio
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Caterina Zanus
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Flavio Faletra
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Alessia Pesaresi
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Ilaria Ziccardi
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Anna Morgan
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Giorgia Girotto
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Paola Costa
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Marco Carrozzi
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Adamo P. d’Adamo
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence:
| | - Luciana Musante
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| |
Collapse
|
7
|
Khalilov D, Haryanyan G, Salman B, Yucesan E, Ugur Iseri S, Bebek N. Epilepsy or neurodevelopmental disorders are associated with homozygous and pathogenic ELP2 variation in three siblings. Neurocase 2022; 28:488-492. [PMID: 36787709 DOI: 10.1080/13554794.2023.2176779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Developmental and Epileptic Encephalopathies (DEEs) are a group of early-onset syndromic disorders characterized by varying degree of intellectual disability, autism spectrum, seizures, and developmental delay. Herein, we have clinically and genetically dissected three siblings from Turkey with DEE born to first cousin unaffected parents. We identified a homozygous pathogenic variant in ELP2 (ENST00000358232.11:c.1385G>A; p.(Arg462Gln)). Our results, together with in depth literature review, underlie the importance of codon encoding the arginine at position 462 as a hotspot for ELP2 related neurological phenotypes.
Collapse
Affiliation(s)
- Dovlat Khalilov
- Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| | - Garen Haryanyan
- Aziz Sancar Institute of Experimental Medicine, Department of Genetics, Istanbul University, Istanbul, Turkey.,Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Baris Salman
- Aziz Sancar Institute of Experimental Medicine, Department of Genetics, Istanbul University, Istanbul, Turkey.,Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Emrah Yucesan
- Institute of Neurological Sciences, Department of Neurogenetics, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sibel Ugur Iseri
- Aziz Sancar Institute of Experimental Medicine, Department of Genetics, Istanbul University, Istanbul, Turkey
| | - Nerses Bebek
- Istanbul Faculty of Medicine, Department of Neurology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Musante L, Faletra F, Meier K, Tomoum H, Najarzadeh Torbati P, Blair E, North S, Gärtner J, Diegmann S, Beiraghi Toosi M, Ashrafzadeh F, Ghayoor Karimiani E, Murphy D, Murru FM, Zanus C, Magnolato A, La Bianca M, Feresin A, Girotto G, Gasparini P, Costa P, Carrozzi M. TTC5 syndrome: Clinical and molecular spectrum of a severe and recognizable condition. Am J Med Genet A 2022; 188:2652-2665. [PMID: 35670379 PMCID: PMC9541101 DOI: 10.1002/ajmg.a.62852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/31/2022] [Accepted: 04/30/2022] [Indexed: 01/24/2023]
Abstract
Biallelic mutations in the TTC5 gene have been associated with autosomal recessive intellectual disability (ARID) and subsequently with an ID syndrome including severe speech impairment, cerebral atrophy, and hypotonia as clinical cornerstones. A TTC5 role in IDs has been proposed based on the physical interaction of TTC5 with p300, and possibly reducing p300 co-activator complex activity, similarly to what was observed in Menke-Hennekam 1 and 2 patients (MKHK1 and 2) carrying, respectively, mutations in exon 30 and 31 of CREBBP and EP300, which code for the TTC5-binding region. Recently, TTC5-related brain malformation has been linked to tubulinopathies due to the function of TTC5 in tubulins' dynamics. We reported seven new patients with novel or recurrent TTC5 variants. The deep characterization of the molecular and phenotypic spectrum confirmed TTC5-related disorder as a recognizable, very severe neurodevelopmental syndrome. In addition, other relevant clinical aspects, including a severe pre- and postnatal growth retardation, cryptorchidism, and epilepsy, have emerged from the reversal phenotype approach and the review of already published TTC5 cases. Microcephaly and facial dysmorphism resulted in being less variable than that documented before. The TTC5 clinical features have been compared with MKHK1 published cases in the hypothesis that clinical overlap in some characteristics of the two conditions was related to the common p300 molecular pathway.
Collapse
Affiliation(s)
- Luciana Musante
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Flavio Faletra
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Kolja Meier
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GöttingenGöttingenGermany
| | - Hoda Tomoum
- Department of PediatricsAin Shams UniversityCairoEgypt
| | | | - Edward Blair
- Oxford Centre for Genomic MedicineOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Sally North
- Oxford Centre for Genomic MedicineOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GöttingenGöttingenGermany
| | - Susann Diegmann
- Department of Pediatrics and Adolescent MedicineUniversity Medical Center GöttingenGöttingenGermany
| | - Mehran Beiraghi Toosi
- Pediatric Neurology Department, Ghaem HospitalMashhad University of Medical SciencesMashhadIran
| | - Farah Ashrafzadeh
- Department of Pediatrics, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Ehsan Ghayoor Karimiani
- Department of Molecular GeneticsNext Generation Genetic PolyclinicMashhadIran
- Molecular and Clinical Sciences InstituteSt. George's, University of LondonLondonUK
- Innovative Medical Research Center, Mashhad BranchIslamic Azad UniversityMashhadIran
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Flora Maria Murru
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Caterina Zanus
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Andrea Magnolato
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Martina La Bianca
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Agnese Feresin
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Giorgia Girotto
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Paolo Gasparini
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Paola Costa
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| | - Marco Carrozzi
- Institute for Maternal and Child Health ‐ IRCCS “Burlo Garofolo”TriesteItaly
| |
Collapse
|
9
|
Sánchez-Luquez KY, Carpena MX, Karam SM, Tovo-Rodrigues L. The contribution of whole-exome sequencing to intellectual disability diagnosis and knowledge of underlying molecular mechanisms: A systematic review and meta-analysis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108428. [PMID: 35905832 DOI: 10.1016/j.mrrev.2022.108428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 01/01/2023]
Abstract
Whole-exome sequencing (WES) is useful for molecular diagnosis, family genetic counseling, and prognosis of intellectual disability (ID). However, ID molecular diagnosis ascertainment based on WES is highly dependent on de novo mutations (DNMs) and variants of uncertain significance (VUS). The quantification of DNM frequency in ID molecular diagnosis ascertainment and the biological mechanisms common to genes with VUS may provide objective information about WES use in ID diagnosis and etiology. We aimed to investigate and estimate the rate of ID molecular diagnostic assessment by WES, quantify the contribution of DNMs to this rate, and biologically and functionally characterize the genes whose mutations were identified through WES. A PubMed/Medline, Web of Science, Scopus, Science Direct, BIREME, and PsycINFO systematic review and meta-analysis was performed, including studies published between 2010 and 2022. Thirty-seven articles with data on ID molecular diagnostic yield using the WES approach were included in the review. WES testing accounted for an overall diagnostic rate of 42% (Confidence interval (CI): 35-50%), while the estimate restricted to DNMs was 11% (CI: 6-18%). Genetic information on mutations and genes was extracted and split into two groups: (1) genes whose mutation was used for positive molecular diagnosis, and (2) genes whose mutation led to uncertain molecular diagnosis. After functional enrichment analysis, in addition to their expected roles in neurodevelopment, genes from the first group were enriched in epigenetic regulatory mechanisms, immune system regulation, and circadian rhythm control. Genes from uncertain diagnosis cases were enriched in the renin angiotensin pathway. Taken together, our results support WES as an important approach to the molecular diagnosis of ID. The results also indicated relevant pathways that may underlie the pathogenesis of ID with the renin-angiotensin pathway being suggested to be a potential pathway underlying the pathogenesis of ID.
Collapse
Affiliation(s)
| | - Marina Xavier Carpena
- Postgraduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Brazil.
| | - Simone M Karam
- Postgraduate Program in Public Health, Universidade Federal do Rio Grande, Rio Grande, Brazil.
| | | |
Collapse
|
10
|
Governance of the clinical pathway and management of the patient suffering from epilepsy and drug-resistant epilepsy. GLOBAL & REGIONAL HEALTH TECHNOLOGY ASSESSMENT 2022; 9:4-9. [PMID: 36628125 PMCID: PMC9796603 DOI: 10.33393/grhta.2022.2418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 01/13/2023] Open
Abstract
Epilepsy is a diffuse chronic neurological disease affecting around 50 million people worldwide. The diagnostic criteria by the International League against Epilepsy must be fulfilled to diagnose the disease, which is characterized by brief and transient episodes of abnormal neuronal activity involving one or both hemispheres, depending on the epilepsy type. The diagnosis of epilepsy should be properly and timely made because patients suffering from the disease are affected not only by seizure recurrence but also by epilepsy-related psychiatric and/or cognitive comorbidities that may have a huge impact with severe professional and social implications. It is of vital importance to define a specific governance model that has to be virtuously applied into the different phases of the clinical pathway of the patients with epilepsy in order to guarantee them the best model of care possible.
Collapse
|