1
|
Kuraz Abebe B, Wang J, Guo J, Wang H, Li A, Zan L. A review of the role of epigenetic studies for intramuscular fat deposition in beef cattle. Gene 2024; 908:148295. [PMID: 38387707 DOI: 10.1016/j.gene.2024.148295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Intramuscular fat (IMF) deposition profoundly influences meat quality and economic value in beef cattle production. Meanwhile, contemporary developments in epigenetics have opened new outlooks for understanding the molecular basics of IMF regulation, and it has become a key area of research for world scholars. Therefore, the aim of this paper was to provide insight and synthesis into the intricate relationship between epigenetic mechanisms and IMF deposition in beef cattle. The methodology involves a thorough analysis of existing literature, including pertinent books, academic journals, and online resources, to provide a comprehensive overview of the role of epigenetic studies in IMF deposition in beef cattle. This review summarizes the contemporary studies in epigenetic mechanisms in IMF regulation, high-resolution epigenomic mapping, single-cell epigenomics, multi-omics integration, epigenome editing approaches, longitudinal studies in cattle growth, environmental epigenetics, machine learning in epigenetics, ethical and regulatory considerations, and translation to industry practices from perspectives of IMF deposition in beef cattle. Moreover, this paper highlights DNA methylation, histone modifications, acetylation, phosphorylation, ubiquitylation, non-coding RNAs, DNA hydroxymethylation, epigenetic readers, writers, and erasers, chromatin immunoprecipitation followed by sequencing, whole genome bisulfite sequencing, epigenome-wide association studies, and their profound impact on the expression of crucial genes governing adipogenesis and lipid metabolism. Nutrition and stress also have significant influences on epigenetic modifications and IMF deposition. The key findings underscore the pivotal role of epigenetic studies in understanding and enhancing IMF deposition in beef cattle, with implications for precision livestock farming and ethical livestock management. In conclusion, this review highlights the crucial significance of epigenetic pathways and environmental factors in affecting IMF deposition in beef cattle, providing insightful information for improving the economics and meat quality of cattle production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Department of Animal Science, Werabe University, P.O. Box 46, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
2
|
Zhang Q, Li Q, Wang Y, Zhang Y, Peng R, Wang Z, Zhu B, Xu L, Gao X, Chen Y, Gao H, Hu J, Qian C, Ma M, Duan R, Li J, Zhang L. Characterization of Chromatin Accessibility in Fetal Bovine Chondrocytes. Animals (Basel) 2023; 13:1875. [PMID: 37889831 PMCID: PMC10251841 DOI: 10.3390/ani13111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 10/29/2023] Open
Abstract
Despite significant advances of the bovine epigenome investigation, new evidence for the epigenetic basis of fetal cartilage development remains lacking. In this study, the chondrocytes were isolated from long bone tissues of bovine fetuses at 90 days. The Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-seq) and transcriptome sequencing (RNA-seq) were used to characterize gene expression and chromatin accessibility profile in bovine chondrocytes. A total of 9686 open chromatin regions in bovine fetal chondrocytes were identified and 45% of the peaks were enriched in the promoter regions. Then, all peaks were annotated to the nearest gene for Gene Ontology (GO) and Kyoto Encylopaedia of Genes and Genomes (KEGG) analysis. Growth and development-related processes such as amide biosynthesis process (GO: 0043604) and translation regulation (GO: 006417) were enriched in the GO analysis. The KEGG analysis enriched endoplasmic reticulum protein processing signal pathway, TGF-β signaling pathway and cell cycle pathway, which are closely related to protein synthesis and processing during cell proliferation. Active transcription factors (TFs) were enriched by ATAC-seq, and were fully verified with gene expression levels obtained by RNA-seq. Among the top50 TFs from footprint analysis, known or potential cartilage development-related transcription factors FOS, FOSL2 and NFY were found. Overall, our data provide a theoretical basis for further determining the regulatory mechanism of cartilage development in bovine.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Qian Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Yahui Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Yapeng Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Ruiqi Peng
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Zezhao Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Bo Zhu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Lingyang Xu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Xue Gao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Yan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Huijiang Gao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Junwei Hu
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China; (J.H.); (C.Q.); (M.M.); (R.D.)
| | - Cong Qian
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China; (J.H.); (C.Q.); (M.M.); (R.D.)
| | - Minghao Ma
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China; (J.H.); (C.Q.); (M.M.); (R.D.)
| | - Rui Duan
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China; (J.H.); (C.Q.); (M.M.); (R.D.)
| | - Junya Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Lupei Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China; (J.H.); (C.Q.); (M.M.); (R.D.)
| |
Collapse
|
3
|
Boschiero C, Gao Y, Baldwin RL, Ma L, Li CJ, Liu GE. Butyrate Induces Modifications of the CTCF-Binding Landscape in Cattle Cells. Biomolecules 2022; 12:biom12091177. [PMID: 36139015 PMCID: PMC9496099 DOI: 10.3390/biom12091177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Butyrate is produced in the rumen from microbial fermentation and is related to several functions, including cell differentiation and proliferation. Butyrate supplementation in calves can accelerate rumen development. DNA-protein interactions, such as the CCCTC-binding factor (CTCF), play essential roles in chromatin organization and gene expression regulation. Although CTCF-binding sites have been identified recently in cattle, a deeper characterization, including differentially CTCF-binding sites (DCBS), is vital for a better understanding of butyrate’s role in the chromatin landscape. This study aimed to identify CTCF-binding regions and DCBS under a butyrate-induced condition using ChIP-seq in bovine cells; 61,915 CTCF peaks were identified in the butyrate and 51,347 in the control. From these regions, 2265 DCBS were obtained for the butyrate vs. control comparison, comprising ~90% of induced sites. Most of the butyrate DCBS were in distal intergenic regions, showing a potential role as insulators. Gene ontology enrichment showed crucial terms for the induced DCBS, mainly related to cellular proliferation, cell adhesion, and growth regulation. Interestingly, the ECM-receptor interaction pathway was observed for the induced DCBS. Motif enrichment analysis further identified transcription factors, including CTCF, BORIS, TGIF2, and ZIC3. When DCBS was integrated with RNA-seq data, putative genes were identified for the repressed DCBS, including GATA4. Our study revealed promising candidate genes in bovine cells by a butyrate-induced condition that might be related to the regulation of rumen development, such as integrins, keratins, and collagens. These results provide a better understanding of the function of butyrate in cattle rumen development and chromatin landscape regulation.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| |
Collapse
|
4
|
Boschiero C, Gao Y, Baldwin RL, Ma L, Li CJ, Liu GE. Differentially CTCF-Binding Sites in Cattle Rumen Tissue during Weaning. Int J Mol Sci 2022; 23:ijms23169070. [PMID: 36012336 PMCID: PMC9408924 DOI: 10.3390/ijms23169070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
The weaning transition in calves is characterized by major structural changes such as an increase in the rumen capacity and surface area due to diet changes. Studies evaluating rumen development in calves are vital to identify genetic mechanisms affected by weaning. This study aimed to provide a genome-wide characterization of CTCF-binding sites and differentially CTCF-binding sites (DCBS) in rumen tissue during the weaning transition of four Holstein calves to uncover regulatory elements in rumen epithelial tissue using ChIP-seq. Our study generated 67,280 CTCF peaks for the before weaning (BW) and 39,891 for after weaning (AW). Then, 7401 DCBS were identified for the AW vs. BW comparison representing 0.15% of the cattle genome, comprising ~54% of induced DCBS and ~46% of repressed DCBS. Most of the induced and repressed DCBS were in distal intergenic regions, showing a potential role as insulators. Gene ontology enrichment revealed many shared GO terms for the induced and the repressed DCBS, mainly related to cellular migration, proliferation, growth, differentiation, cellular adhesion, digestive tract morphogenesis, and response to TGFβ. In addition, shared KEGG pathways were obtained for adherens junction and focal adhesion. Interestingly, other relevant KEGG pathways were observed for the induced DCBS like gastric acid secretion, salivary secretion, bacterial invasion of epithelial cells, apelin signaling, and mucin-type O-glycan biosynthesis. IPA analysis further revealed pathways with potential roles in rumen development during weaning, including TGFβ, Integrin-linked kinase, and Integrin signaling. When DCBS were further integrated with RNA-seq data, 36 putative target genes were identified for the repressed DCBS, including KRT84, COL9A2, MATN3, TSPAN1, and AJM1. This study successfully identified DCBS in cattle rumen tissue after weaning on a genome-wide scale and revealed several candidate target genes that may have a role in rumen development, such as TGFβ, integrins, keratins, and SMADs. The information generated in this preliminary study provides new insights into bovine genome regulation and chromatin landscape.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
- Correspondence: (C.-j.L.); (G.E.L.); Tel.: +1-301-504-7216 (C.-j.L.); +1-301-504-9843 (G.E.L.); Fax: +1-301-504-8414 (C.-j.L. & G.E.L.)
| |
Collapse
|