1
|
Chakraborty N, Das A, Pal S, Roy S, Sil SK, Adak MK, Hassanzamman M. Exploring Aluminum Tolerance Mechanisms in Plants with Reference to Rice and Arabidopsis: A Comprehensive Review of Genetic, Metabolic, and Physiological Adaptations in Acidic Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1760. [PMID: 38999600 PMCID: PMC11243567 DOI: 10.3390/plants13131760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
Aluminum (Al) makes up a third of the Earth's crust and is a widespread toxic contaminant, particularly in acidic soils. It impacts crops at multiple levels, from cellular to whole plant systems. This review delves into Al's reactivity, including its cellular transport, involvement in oxidative redox reactions, and development of specific metabolites, as well as the influence of genes on the production of membrane channels and transporters, alongside its role in triggering senescence. It discusses the involvement of channel proteins in calcium influx, vacuolar proton pumping, the suppression of mitochondrial respiration, and the initiation of programmed cell death. At the cellular nucleus level, the effects of Al on gene regulation through alterations in nucleic acid modifications, such as methylation and histone acetylation, are examined. In addition, this review outlines the pathways of Al-induced metabolic disruption, specifically citric acid metabolism, the regulation of proton excretion, the induction of specific transcription factors, the modulation of Al-responsive proteins, changes in citrate and nucleotide glucose transporters, and overall metal detoxification pathways in tolerant genotypes. It also considers the expression of phenolic oxidases in response to oxidative stress, their regulatory feedback on mitochondrial cytochrome proteins, and their consequences on root development. Ultimately, this review focuses on the selective metabolic pathways that facilitate Al exclusion and tolerance, emphasizing compartmentalization, antioxidative defense mechanisms, and the control of programmed cell death to manage metal toxicity.
Collapse
Affiliation(s)
- Nilakshi Chakraborty
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Abir Das
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sayan Pal
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Soumita Roy
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Sudipta Kumar Sil
- Department of Botany, University of Gour Banga, Malda 732103, West Bengal, India
| | - Malay Kumar Adak
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Mirza Hassanzamman
- Department of Agronomy, Faculty of Agriculture, Shar-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Ayaz A, Jalal A, Zhang X, Khan KA, Hu C, Li Y, Hou X. In-Depth Characterization of bZIP Genes in the Context of Endoplasmic Reticulum (ER) Stress in Brassica campestris ssp. chinensis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1160. [PMID: 38674568 PMCID: PMC11053814 DOI: 10.3390/plants13081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Numerous studies have been conducted to investigate the genomic characterization of bZIP genes and their involvement in the cellular response to endoplasmic reticulum (ER) stress. These studies have provided valuable insights into the coordinated cellular response to ER stress, which is mediated by bZIP transcription factors (TFs). However, a comprehensive and systematic investigations regarding the role of bZIP genes and their involvement in ER stress response in pak choi is currently lacking in the existing literature. To address this knowledge gap, the current study was initiated to elucidate the genomic characteristics of bZIP genes, gain insight into their expression patterns during ER stress in pak choi, and investigate the protein-to-protein interaction of bZIP genes with the ER chaperone BiP. In total, 112 members of the BcbZIP genes were identified through a comprehensive genome-wide analysis. Based on an analysis of sequence similarity, gene structure, conserved domains, and responsive motifs, the identified BcbZIP genes were categorized into 10 distinct subfamilies through phylogenetic analysis. Chromosomal location and duplication events provided insight into their genomic context and evolutionary history. Divergence analysis estimated their evolutionary history with a predicted divergence time ranging from 0.73 to 80.71 million years ago (MYA). Promoter regions of the BcbZIP genes were discovered to exhibit a wide variety of cis-elements, including light, hormone, and stress-responsive elements. GO enrichment analysis further confirmed their roles in the ER unfolded protein response (UPR), while co-expression network analysis showed a strong relationship of BcbZIP genes with ER-stress-responsive genes. Moreover, gene expression profiles and protein-protein interaction with ER chaperone BiP further confirmed their roles and capacity to respond to ER stress in pak choi.
Collapse
Affiliation(s)
- Aliya Ayaz
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Abdul Jalal
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and Its Products (CBRP), Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Chunmei Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Science and Technology/National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOA, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Kwon G, Yu J, Kim KH. Identifying transcription factors associated with Fusarium graminearum virus 2 accumulation in Fusarium graminearum by phenome-based investigation. Virus Res 2023; 326:199061. [PMID: 36738934 DOI: 10.1016/j.virusres.2023.199061] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/06/2023]
Abstract
Fusarium graminearum virus 2 (FgV2) infection induces phenotypic changes like reduction of growth rate and virulence with an alteration of the transcriptome, including various transcription factor (TFs) gene transcripts in Fusarium graminearum. Transcription factors are the primary regulator in many cellular processes and are significant in virus-host interactions. However, a detailed study about specific TFs to understand interactions between FgV2 and F. graminearum has yet to be conducted. We transferred FgV2 to a F. graminearum TF gene deletion mutant library to identify host TFs related to FgV2 infection. FgV2-infected TF mutants were classified into three groups depending on colony growth. The FgV2 accumulation level was generally higher in TF mutants showing more reduced growth. Among these FgV2-infected TF mutants, we found several possible TFs that might be involved in FgV2 accumulation, generation of defective interfering RNAs, and transcriptional regulation of FgDICER-2 and FgAGO-1 in response to virus infection. We also investigated the relation between FgV2 accumulation and production of reactive oxygen species (ROS) and DNA damage in fungal host cells by using DNA damage- or ROS-responsive TF deletion mutants. Our studies provide insights into the host factors related to FgV2 infection and bases for further investigation to understand interactions between FgV2 and F. graminearum.
Collapse
Affiliation(s)
- Gudam Kwon
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jisuk Yu
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea.
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
4
|
Zhao K, Liu L, Huang S. Genome-Wide Identification and Functional Analysis of the bZIP Transcription Factor Family in Rice Bakanae Disease Pathogen, Fusarium fujikuroi. Int J Mol Sci 2022; 23:ijms23126658. [PMID: 35743103 PMCID: PMC9223689 DOI: 10.3390/ijms23126658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/10/2022] Open
Abstract
Fungal basic leucine zipper (bZIP) proteins play a vital role in biological processes such as growth, biotic/abiotic stress responses, nutrient utilization, and invasion. In this study, genome-wide identification of bZIP genes in the fungus Fusarium fujikuroi, the pathogen of bakanae disease, was carried out. Forty-four genes encoding bZIP transcription factors (TFs) from the genome of F. fujikuroi (FfbZIP) were identified and functionally characterized. Structures, domains, and phylogenetic relationships of the sequences were analyzed by bioinformatic approaches. Based on the phylogenetic relationships with the FfbZIP proteins of eight other fungi, the bZIP genes can be divided into six groups (A–F). The additional conserved motifs have been identified and their possible functions were predicted. To analyze functions of the bZIP genes, 11 FfbZIPs were selected according to different motifs they contained and were knocked out by genetic recombination. Results of the characteristic studies revealed that these FfbZIPs were involved in oxygen stress, osmotic stress, cell wall selection pressure, cellulose utilization, cell wall penetration, and pathogenicity. In conclusion, this study enhanced understandings of the evolution and regulatory mechanism of the FfbZIPs in fungal growth, abiotic/biotic stress resistance, and pathogenicity, which could be the reference for other fungal bZIP studies.
Collapse
|