1
|
Haarkötter C, Isabel Medina-Lozano M, Vinueza-Espinosa DC, Saiz M, Gálvez X, Carlos Álvarez J, Antonio Lorente J. Evaluating the efficacy of three Y-STRs commercial kits in degraded skeletal remains. Sci Justice 2024; 64:543-548. [PMID: 39277336 DOI: 10.1016/j.scijus.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/18/2024] [Accepted: 07/29/2024] [Indexed: 09/17/2024]
Abstract
Y chromosome short tandem repeats (Y-STRs) typing is a useful tool in scenarios such as mass graves analysis or disaster victim identification and has become a routine analysis in many laboratories. Not many comparisons have been performed with the currently available commercial kits, much less with degraded skeletal remains. This research aims to evaluate the performance of three commercial Y-STR kits: Yfiler™ Plus, PowerPlex® Y23, and Investigator® Argus Y-28 in 63 degraded skeletal remains from mass graves. PowerPlex® Y23 yields more reportable markers and twice the RFU on average, while Yfiler™ Plus and Investigator® Argus Y-28 exhibited a similar behaviour. Additionally, Argus Y-28, which has not been tested with this kind of samples in literature before, showed a good performance. Finally, a predictive model was attempted to be developed from quantification and autosomal STR data. However, no acceptable model could be obtained. Nevertheless, good Y-STR typing results may be expected if at least 50 pg DNA input is used or 13 autosomal markers were previously obtained.
Collapse
Affiliation(s)
- Christian Haarkötter
- University of Granada, Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, Av. Investigación 11 - PTS - 18016 Granada, Spain
| | - María Isabel Medina-Lozano
- University of Granada, Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, Av. Investigación 11 - PTS - 18016 Granada, Spain
| | - Diana C Vinueza-Espinosa
- University of Granada, Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, Av. Investigación 11 - PTS - 18016 Granada, Spain
| | - María Saiz
- University of Granada, Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, Av. Investigación 11 - PTS - 18016 Granada, Spain
| | - Xiomara Gálvez
- University of Granada, Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, Av. Investigación 11 - PTS - 18016 Granada, Spain
| | - Juan Carlos Álvarez
- University of Granada, Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, Av. Investigación 11 - PTS - 18016 Granada, Spain.
| | - José Antonio Lorente
- University of Granada, Laboratory of Genetic Identification & Human Rights (LABIGEN-UGR), Department of Legal Medicine, Faculty of Medicine, Av. Investigación 11 - PTS - 18016 Granada, Spain
| |
Collapse
|
3
|
Wang Z, Wang M, Hu L, He G, Nie S. Evolutionary profiles and complex admixture landscape in East Asia: New insights from modern and ancient Y chromosome variation perspectives. Heliyon 2024; 10:e30067. [PMID: 38756579 PMCID: PMC11096704 DOI: 10.1016/j.heliyon.2024.e30067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Human Y-chromosomes are characterized by nonrecombination and uniparental inheritance, carrying traces of human history evolution and admixture. Large-scale population-specific genomic sources based on advanced sequencing technologies have revolutionized our understanding of human Y chromosome diversity and its anthropological and forensic applications. Here, we reviewed and meta-analyzed the Y chromosome genetic diversity of modern and ancient people from China and summarized the patterns of founding lineages of spatiotemporally different populations associated with their origin, expansion, and admixture. We emphasized the strong association between our identified founding lineages and language-related human dispersal events correlated with the Sino-Tibetan, Altaic, and southern Chinese multiple-language families related to the Hmong-Mien, Tai-Kadai, Austronesian, and Austro-Asiatic languages. We subsequently summarize the recent advances in translational applications in forensic and anthropological science, including paternal biogeographical ancestry inference (PBGAI), surname investigation, and paternal history reconstruction. Whole-Y sequencing or high-resolution panels with high coverage of terminal Y chromosome lineages are essential for capturing the genomic diversity of ethnolinguistically diverse East Asians. Generally, we emphasized the importance of including more ethnolinguistically diverse, underrepresented modern and spatiotemporally different ancient East Asians in human genetic research for a comprehensive understanding of the paternal genetic landscape of East Asians with a detailed time series and for the reconstruction of a reference database in the PBGAI, even including new technology innovations of Telomere-to-Telomere (T2T) for new genetic variation discovery.
Collapse
Affiliation(s)
- Zhiyong Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Mengge Wang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liping Hu
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital of Sichuan University, Sichuan University, Chengdu, 610000, China
- Center for Archaeological Science, Sichuan University, Chengdu, 610000, China
| | - Shengjie Nie
- School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
4
|
Kuznetsova IL, Uralsky LI, Tyazhelova TV, Andreeva TV, Rogaev EI. Mosaic loss of the Y chromosome in human neurodegenerative and oncological diseases. Vavilovskii Zhurnal Genet Selektsii 2023; 27:502-511. [PMID: 37808213 PMCID: PMC10551935 DOI: 10.18699/vjgb-23-61] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 10/10/2023] Open
Abstract
The development of new biomarkers for prediction and early detection of human diseases, as well as for monitoring the response to therapy is one of the most relevant areas of modern human genetics and genomics. Until recently, it was believed that the function of human Y chromosome genes was limited to determining sex and controlling spermatogenesis. Thanks to occurance of large databases of the genome-wide association study (GWAS), there has been a transition to the use of large samples for analyzing genetic changes in both normal and pathological conditions. This has made it possible to assess the association of mosaic aneuploidy of the Y chromosome in somatic cells with a shorter lifespan in men compared to women. Based on data from the UK Biobank, an association was found between mosaic loss of the Y chromosome (mLOY) in peripheral blood leukocytes and the age of men over 70, as well as a number of oncological, cardiac, metabolic, neurodegenerative, and psychiatric diseases. As a result, mLOY in peripheral blood cells has been considered a potential marker of biological age in men and as a marker of certain age-related diseases. Currently, numerous associations have been identified between mLOY and genes based on GWAS and transcriptomes in affected tissues. However, the exact cause of mLOY and the impact and consequences of this phenomenon at the whole organism level have not been established. In particular, it is unclear whether aneuploidy of the Y chromosome in blood cells may affect the development of pathologies that manifest in other organs, such as the brain in Alzheimer's disease, or whether it is a neutral biomarker of general genomic instability. This review examines the main pathologies and genetic factors associated with mLOY, as well as the hypotheses regarding their interplay. Special attention is given to recent studies on mLOY in brain cells in Alzheimer's disease.
Collapse
Affiliation(s)
- I L Kuznetsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Department of Genomics and Human Genetics, Moscow, Russia Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences, Sochi, Russia
| | - L I Uralsky
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Department of Genomics and Human Genetics, Moscow, Russia Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences, Sochi, Russia
| | - T V Tyazhelova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Department of Genomics and Human Genetics, Moscow, Russia
| | - T V Andreeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Department of Genomics and Human Genetics, Moscow, Russia Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences, Sochi, Russia Lomonosov Moscow State University, Center for Genetics and Genetic Technologies, Faculty of Biology, Moscow, Russia
| | - E I Rogaev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Department of Genomics and Human Genetics, Moscow, Russia Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences, Sochi, Russia Lomonosov Moscow State University, Center for Genetics and Genetic Technologies, Faculty of Biology, Moscow, Russia
| |
Collapse
|
5
|
Bozlak E, Radovic L, Remer V, Rigler D, Allen L, Brem G, Stalder G, Castaneda C, Cothran G, Raudsepp T, Okuda Y, Moe KK, Moe HH, Kounnavongsa B, Keonouchanh S, Van NH, Vu VH, Shah MK, Nishibori M, Kazymbet P, Bakhtin M, Zhunushov A, Paul RC, Dashnyam B, Nozawa K, Almarzook S, Brockmann GA, Reissmann M, Antczak DF, Miller DC, Sadeghi R, von Butler-Wemken I, Kostaras N, Han H, Manglai D, Abdurasulov A, Sukhbaatar B, Ropka-Molik K, Stefaniuk-Szmukier M, Lopes MS, da Câmara Machado A, Kalashnikov VV, Kalinkova L, Zaitev AM, Novoa-Bravo M, Lindgren G, Brooks S, Rosa LP, Orlando L, Juras R, Kunieda T, Wallner B. Refining the evolutionary tree of the horse Y chromosome. Sci Rep 2023; 13:8954. [PMID: 37268661 DOI: 10.1038/s41598-023-35539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
The Y chromosome carries information about the demography of paternal lineages, and thus, can prove invaluable for retracing both the evolutionary trajectory of wild animals and the breeding history of domesticates. In horses, the Y chromosome shows a limited, but highly informative, sequence diversity, supporting the increasing breeding influence of Oriental lineages during the last 1500 years. Here, we augment the primary horse Y-phylogeny, which is currently mainly based on modern horse breeds of economic interest, with haplotypes (HT) segregating in remote horse populations around the world. We analyze target enriched sequencing data of 5 Mb of the Y chromosome from 76 domestic males, together with 89 whole genome sequenced domestic males and five Przewalski's horses from previous studies. The resulting phylogeny comprises 153 HTs defined by 2966 variants and offers unprecedented resolution into the history of horse paternal lineages. It reveals the presence of a remarkable number of previously unknown haplogroups in Mongolian horses and insular populations. Phylogenetic placement of HTs retrieved from 163 archaeological specimens further indicates that most of the present-day Y-chromosomal variation evolved after the domestication process that started around 4200 years ago in the Western Eurasian steppes. Our comprehensive phylogeny significantly reduces ascertainment bias and constitutes a robust evolutionary framework for analyzing horse population dynamics and diversity.
Collapse
Affiliation(s)
- Elif Bozlak
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lara Radovic
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
- Vienna Graduate School of Population Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Viktoria Remer
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Doris Rigler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Lucy Allen
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Gabrielle Stalder
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Caitlin Castaneda
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gus Cothran
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Terje Raudsepp
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Yu Okuda
- Museum of Dinosaur Research, Okayama University of Science, Okayama, Japan
| | - Kyaw Kyaw Moe
- Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Hla Hla Moe
- Department of Genetics and Animal Breeding, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Bounthavone Kounnavongsa
- National Agriculture and Forestry Research Institute (Lao) Resources, Livestock Research Center, Xaythany District, Vientiane, Laos
| | - Soukanh Keonouchanh
- Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Nguyen Huu Van
- Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Van Hai Vu
- Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Manoj Kumar Shah
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Rampur, 44209, Nepal
| | - Masahide Nishibori
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Polat Kazymbet
- Radiobiological Research Institute, JSC Astana Medical University, Astana, 010000, Republic of Kazakhstan
| | - Meirat Bakhtin
- Institute of Biotechnology, National Academy of Sciences of the Kyrgyz Republic, Bishkek, 720071, Kyrgyz Republic
| | - Asankadyr Zhunushov
- Institute of Biotechnology, National Academy of Sciences of the Kyrgyz Republic, Bishkek, 720071, Kyrgyz Republic
| | - Ripon Chandra Paul
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Bumbein Dashnyam
- Institute of Biological Sciences, Mongolian Academy of Sciences, Ulaan Baator, Mongolia
| | - Ken Nozawa
- Primate Research Institute, Kyoto University, Aichi, Japan
| | - Saria Almarzook
- Albrecht Daniel Thaer-Institut, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Gudrun A Brockmann
- Albrecht Daniel Thaer-Institut, Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Monika Reissmann
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Donald C Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Raheleh Sadeghi
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Ines von Butler-Wemken
- Barb Horse Breeding Organisation VFZB E. V., Verein der Freunde und Züchter Des Berberpferdes E.V., Kirchgasse 11, 67718, Schmalenberg, Germany
| | | | - Haige Han
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Dugarjaviin Manglai
- Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Abdugani Abdurasulov
- Department of Agriculture, Faculty of Natural Sciences and Geography, Osh State University, 723500, Osh, Kyrgyzstan
| | - Boldbaatar Sukhbaatar
- Sector of Surveillance and Diagnosis of Infectious Diseases, State Central Veterinary Laboratory, Ulaanbaatar, 17024, Mongolia
| | - Katarzyna Ropka-Molik
- National Research Institute of Animal Production, Animal Molecular Biology, 31-047, Cracow, Poland
| | | | - Maria Susana Lopes
- Biotechnology Centre of Azores, University of Azores, 9700-042, Angra do Heroísmo, Portugal
| | | | | | - Liliya Kalinkova
- All-Russian Research Institute for Horse Breeding, Ryazan, 391105, Russia
| | - Alexander M Zaitev
- All-Russian Research Institute for Horse Breeding, Ryazan, 391105, Russia
| | - Miguel Novoa-Bravo
- Genética Animal de Colombia SAS., Av. Calle 26 #69-76, 111071, Bogotá, Colombia
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
- Department of Biosystems, Center for Animal Breeding and Genetics, KU Leuven, 3001, Leuven, Belgium
| | - Samantha Brooks
- Department of Animal Science, UF Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Laura Patterson Rosa
- Department of Agriculture and Industry, Sul Ross State University, Alpine, TX, 79832, USA
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Rytis Juras
- School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | - Tetsuo Kunieda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan.
| | - Barbara Wallner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210, Vienna, Austria.
| |
Collapse
|