A Methylation Diagnostic Model Based on Random Forests and Neural Networks for Asthma Identification.
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022;
2022:2679050. [PMID:
36213574 PMCID:
PMC9534672 DOI:
10.1155/2022/2679050]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Background
Asthma significantly impacts human life and health as a chronic disease. Traditional treatments for asthma have several limitations. Artificial intelligence aids in cancer treatment and may also accelerate our understanding of asthma mechanisms. We aimed to develop a new clinical diagnosis model for asthma using artificial neural networks (ANN).
Methods
Datasets (GSE85566, GSE40576, and GSE13716) were downloaded from Gene Expression Omnibus (GEO) and identified differentially expressed CpGs (DECs) enriched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Random forest (RF) and ANN algorithms further identified gene characteristics and built clinical models. In addition, two external validation datasets (GSE40576 and GSE137716) were used to validate the diagnostic ability of the model.
Results
The methylation analysis tool (ChAMP) considered DECs that were up-regulated (n =121) and down-regulated (n =20). GO results showed enrichment of actin cytoskeleton organization and cell-substrate adhesion, shigellosis, and serotonergic synapses. RF (random forest) analysis identified 10 crucial DECs (cg05075579, cg20434422, cg03907390, cg00712106, cg05696969, cg22862094, cg11733958, cg00328720, and cg13570822). ANN constructed the clinical model according to 10 DECs. In two external validation datasets (GSE40576 and GSE137716), the Area Under Curve (AUC) for GSE137716 was 1.000, and AUC for GSE40576 was 0.950, confirming the reliability of the model.
Conclusion
Our findings provide new methylation markers and clinical diagnostic models for asthma diagnosis and treatment.
Collapse