1
|
Lin C, Bai X, Zhang L. Chitosan/Sodium Tripolyphosphate/Sodium Alginate/miRNA-34c-5p Antagomir Scaffolds Promote the Functionality of Rabbit Cranial Parietal Repair. Int J Nanomedicine 2024; 19:12939-12956. [PMID: 39651352 PMCID: PMC11622683 DOI: 10.2147/ijn.s481965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024] Open
Abstract
Purpose MicroRNA-34c-5p (miR-34c-5p) plays a pivotal role in bone remodeling, yet its therapeutic potential is hindered by challenges such as instability, limited cellular internalization, and immune responses. This study was aimed at developing innovative scaffolds capable of efficiently delivering microRNAs (miRNAs), specifically miR-34c-5p. Methods Chitosan (CS)/sodium tripolyphosphate (STPP)/sodium alginate (SA) scaffolds, referred to as CTS scaffolds, were synthesized at a specific ratio and characterized using dynamic light scattering and scanning electron microscopy (SEM). Cytotoxicity assessments were conducted through cell activity staining. The loading capacity and releasing performance of miRNAs were quantified using spectrophotometry. Subsequently, the in vivo efficacy of miR-34c-5p Agomir/Antagomir in regulating bone repair was evaluated in the rabbit cranial bone defect model, with micro-CT scanning and histological analysis conducted at 4, 8, and 12 weeks. Results CTS scaffolds with a composition ratio of 1:0.2:0.1 were successfully synthesized, exhibiting a mean particle size of 360.1 nm. SEM revealed scaffolds had the porous spongy structure. Cell activity staining confirmed the excellent biocompatibility of the CTS scaffolds. Spectrophotometry demonstrated miR-34c-5p Antagomir were continually released, reaching 91.41% within 30 days. Differential new bone formation was observed between the miR-34c-5p Agomir and Antagomir groups. Micro-CT imaging and histological staining revealed varying degrees of bone regeneration, with notable improvements in the miR-34c-5p Antagomir group. Conclusion CTS scaffolds with a composition ratio of 1:0.2:0.1 demonstrate favorable biocompatibility and enable efficient loading and sustained release of miR-34c-5p Antagomir. The study suggests potential applications of miR-34c-5p Antagomir in promoting bone repair and highlights the promise of innovative scaffolds for therapeutic miRNAs administration in bone regeneration.
Collapse
Affiliation(s)
- Chen Lin
- Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| | - Xinyi Bai
- Department of Stomatology, Beijing Shunyi District Hospital, Beijing, 101300, People’s Republic of China
| | - Linkun Zhang
- Department of Orthodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin, 300041, People’s Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China
| |
Collapse
|
2
|
Qiu M, Zhang X, Liao L, Zhang N, Liu M. Regulatory Role of Nfix Gene in Sheep Skeletal Muscle Cell Development and Its Interaction Mechanism with MSTN. Int J Mol Sci 2024; 25:11988. [PMID: 39596059 PMCID: PMC11593348 DOI: 10.3390/ijms252211988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Skeletal muscle development is crucial for livestock production, and understanding the molecular mechanisms involved is essential for enhancing muscle growth in sheep. This study aimed to investigate the role of Nfix, a member of the nuclear factor I (NFI) family, in regulating muscle development in sheep, filling a significant gap in the current understanding of Nfix deficiency and its impact on skeletal muscle growth, as no similar studies have been reported in this species. Bioinformatic analysis, including temporal analysis of transcriptome data, identified Nfix as a potential target gene for muscle growth regulation. The effects of Nfix overexpression and knockout on the proliferation and differentiation of sheep skeletal muscle cells were investigated. Changes in the expression of associated marker genes were assessed to explore the regulatory link between Nfix and the myostatin (MSTN) gene. Additionally, target miRNAs for Nfix and MSTN were predicted using online databases such as miRWalk, resulting in the construction of an Nfix-miRNA-MSTN interactive regulatory network. The findings revealed that Nfix promotes the proliferation and differentiation of sheep skeletal muscle cells, with further analysis indicating that Nfix may regulate muscle cell development by modulating MSTN expression. This study provides preliminary insights into the function of Nfix in sheep skeletal muscle development and its regulatory interactions, addressing a critical knowledge gap regarding Nfix deficiency and its implications for muscle growth. These findings contribute to a better understanding of muscle biology in sheep and provide a theoretical foundation for future research into the regulatory mechanisms governing muscle development.
Collapse
Affiliation(s)
- Meiyu Qiu
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| | - Xuemei Zhang
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| | - Li Liao
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Ning Zhang
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| | - Mingjun Liu
- Institute of Biotechnology, Xinjiang Academy of Animal Science, Xinjiang Key Laboratory of Animal Biotechnology, Urumqi 830026, China
| |
Collapse
|
3
|
Quigley RM, Kearney M, Kennedy OD, Duncan HF. Tissue engineering approaches for dental pulp regeneration: The development of novel bioactive materials using pharmacological epigenetic inhibitors. Bioact Mater 2024; 40:182-211. [PMID: 38966600 PMCID: PMC11223092 DOI: 10.1016/j.bioactmat.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment. However, novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative, biologically-driven regenerative medicine strategies. For example, cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration. These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators (HDACis, DNMTis, and ncRNAs), which are cost-effective and easily applied to stimulate pulp tissue regrowth. Unfortunately, many biological factors hinder the clinical development of regenerative therapies, including a lack of blood supply and poor infection control in the necrotic root canal system. Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability, cost concerns, and regulatory issues. This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration, explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition. It will highlight the components of dental pulp regenerative approaches, describe their current limitations, and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics.
Collapse
Affiliation(s)
- Ross M. Quigley
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| | - Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
4
|
Li A, Wang Y, Wang Y, Xiong Y, Li Y, Liu W, Zhu J, Lin Y. Effects of the FHL2 gene on the development of subcutaneous and intramuscular adipocytes in goats. BMC Genomics 2024; 25:850. [PMID: 39261767 PMCID: PMC11389066 DOI: 10.1186/s12864-024-10755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Adipose tissue affects not only the meat quality of domestic animals, but also human health. Adipocyte differentiation is regulated by a series of regulatory genes and cyclins. Four and half-LIM protein (FHL2) is positively correlated with the hypertrophy of adipocytes and can cause symptoms such as obesity and diabetes. RESULT In the transcriptome sequencing analysis of intramuscular adipocytes after three days of differentiation, the differentially expressed gene FHL2 was found. To further explore the biological significance of the differentially expressed gene FHL2, which was downregulated in the mature adipocytes. We revealed the function of FHL2 in adipogenesis through the acquisition and loss of function of FHL2. The results showed that the overexpression of FHL2 significantly increased the expression of adipogenic genes (PPARγ, C/EBPβ) and the differentiation of intramuscular and subcutaneous adipocytes. However, silencing FHL2 significantly inhibited adipocyte differentiation. The overexpression of FHL2 increased the number of adipocytes stained with crystal violet and increased the mRNA expression of proliferation marker genes such as CCNE, PCNA, CCND and CDK2. In addition, it significantly increased the rate of EdU positive cells. In terms of apoptosis, overexpression of FHL2 significantly inhibited the expression of P53 and BAX in both intramuscular and subcutaneous adipocytes, which are involved in cell apoptosis. However, overexpression of FHL2 promoted the expression of BCL, but was rescued by the silencing of FHL2. CONCLUSIONS In summary, FHL2 may be a positive regulator of intramuscular and subcutaneous adipocyte differentiation and proliferation, and acts as a negative regulator of intramuscular and subcutaneous adipocyte apoptosis. These findings provide a theoretical basis for the subsequent elucidation of FHL2 in adipocytes.
Collapse
Affiliation(s)
- An Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Wei Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
5
|
Niu Y, Guo D, Wei Y, Li J, Bai Y, Liu Z, Jia X, Chen Z, Li L, Shi B, Zhang X, Zhao Z, Hu J, Wang J, Liu X, Li S. Comparative Transcriptome Analysis of mRNA and miRNA during the Development of Longissimus Dorsi Muscle of Gannan Yak and Tianzhu White Yak. Animals (Basel) 2024; 14:2278. [PMID: 39123804 PMCID: PMC11311108 DOI: 10.3390/ani14152278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The Gannan yak, a superior livestock breed found on the Tibetan Plateau, exhibits significantly enhanced body size, weight, and growth performance in comparison to the Tianzhu white yak. MiRNAs play a pivotal role in regulating muscle growth by negatively modulating target genes. In this study, we found the average diameter, area, and length of myofibers in Gannan yaks were significantly higher than those of Tianzhu white yaks. Further, we focused on analyzing the longissimus dorsi muscle from both Gannan yaks and Tianzhu white yaks through transcriptome sequencing to identify differentially expressed (DE)miRNAs that influence skeletal muscle development. A total of 254 DE miRNAs were identified, of which 126 miRNAs were up-regulated and 128 miRNAs were down-regulated. GO and KEGG enrichment analysis showed that the target genes of these DE miRNAs were significantly enriched in signaling pathways associated with muscle growth and development. By constructing a DE miRNA- DE mRNA interaction network, we screened 18 key miRNAs, and notably, four of the candidates (novel-m0143-3p, novel-m0024-3p, novel-m0128-5p, and novel-m0026-3p) targeted six genes associated with muscle growth and development (DDIT4, ADAMTS1, CRY2, AKIRIN2, SIX1, and FOXO1). These findings may provide theoretical references for further studies on the role of miRNAs in muscle growth and development in Gannan yaks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Y.N.); (D.G.); (Y.W.); (J.L.); (Y.B.); (Z.L.); (X.J.); (Z.C.); (L.L.); (B.S.); (X.Z.); (J.H.); (J.W.); (X.L.); (S.L.)
| | | | | | | | | |
Collapse
|
6
|
Kiełbowski K, Bakinowska E, Procyk G, Ziętara M, Pawlik A. The Role of MicroRNA in the Pathogenesis of Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:6108. [PMID: 38892293 PMCID: PMC11172814 DOI: 10.3390/ijms25116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked progressive disorder associated with muscle wasting and degeneration. The disease is caused by mutations in the gene that encodes dystrophin, a protein that links the cytoskeleton with cell membrane proteins. The current treatment methods aim to relieve the symptoms of the disease or partially rescue muscle functionality. However, they are insufficient to suppress disease progression. In recent years, studies have uncovered an important role for non-coding RNAs (ncRNAs) in regulating the progression of numerous diseases. ncRNAs, such as micro-RNAs (miRNAs), bind to their target messenger RNAs (mRNAs) to suppress translation. Understanding the mechanisms involving dysregulated miRNAs can improve diagnosis and suggest novel treatment methods for patients with DMD. This review presents the available evidence on the role of altered expression of miRNAs in the pathogenesis of DMD. We discuss the involvement of these molecules in the processes associated with muscle physiology and DMD-associated cardiomyopathy.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.Z.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.Z.)
| | - Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Marta Ziętara
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.Z.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.Z.)
| |
Collapse
|
7
|
Dennhag N, Kahsay A, Nissen I, Nord H, Chermenina M, Liu J, Arner A, Liu JX, Backman LJ, Remeseiro S, von Hofsten J, Pedrosa Domellöf F. fhl2b mediates extraocular muscle protection in zebrafish models of muscular dystrophies and its ectopic expression ameliorates affected body muscles. Nat Commun 2024; 15:1950. [PMID: 38431640 PMCID: PMC10908798 DOI: 10.1038/s41467-024-46187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
In muscular dystrophies, muscle fibers loose integrity and die, causing significant suffering and premature death. Strikingly, the extraocular muscles (EOMs) are spared, functioning well despite the disease progression. Although EOMs have been shown to differ from body musculature, the mechanisms underlying this inherent resistance to muscle dystrophies remain unknown. Here, we demonstrate important differences in gene expression as a response to muscle dystrophies between the EOMs and trunk muscles in zebrafish via transcriptomic profiling. We show that the LIM-protein Fhl2 is increased in response to the knockout of desmin, plectin and obscurin, cytoskeletal proteins whose knockout causes different muscle dystrophies, and contributes to disease protection of the EOMs. Moreover, we show that ectopic expression of fhl2b can partially rescue the muscle phenotype in the zebrafish Duchenne muscular dystrophy model sapje, significantly improving their survival. Therefore, Fhl2 is a protective agent and a candidate target gene for therapy of muscular dystrophies.
Collapse
Affiliation(s)
- Nils Dennhag
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Abraha Kahsay
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Itzel Nissen
- Department of Medical and Translational Biology; Section of Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Hanna Nord
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Maria Chermenina
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| | - Jiao Liu
- Div. Thoracic Surgery, Dept. Clinical Sciences, Lund University, Lund, Sweden
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Anders Arner
- Div. Thoracic Surgery, Dept. Clinical Sciences, Lund University, Lund, Sweden
| | - Jing-Xia Liu
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Ludvig J Backman
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Silvia Remeseiro
- Department of Medical and Translational Biology; Section of Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Jonas von Hofsten
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.
| | - Fatima Pedrosa Domellöf
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden.
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden.
| |
Collapse
|
8
|
Yang Y, Wu J, Liu W, Zhao Y, Chen H. The Function and Regulation Mechanism of Non-Coding RNAs in Muscle Development. Int J Mol Sci 2023; 24:14534. [PMID: 37833983 PMCID: PMC10572267 DOI: 10.3390/ijms241914534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023] Open
Abstract
Animal skeletal muscle growth is regulated by a complex molecular network including some non-coding RNAs (ncRNAs). In this paper, we review the non-coding RNAs related to the growth and development of common animal skeletal muscles, aiming to provide a reference for the in-depth study of the role of ncRNAs in the development of animal skeletal muscles, and to provide new ideas for the improvement of animal production performance.
Collapse
Affiliation(s)
- Yaling Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| | - Jian Wu
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Academy of Agricultural Sciences of Jilin Province, Changchun 136100, China;
| | - Wujun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| | - Yumin Zhao
- Key Laboratory of Beef Cattle Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Academy of Agricultural Sciences of Jilin Province, Changchun 136100, China;
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (Y.Y.); (W.L.)
| |
Collapse
|