1
|
Singh S, Praveen A, Bhadrecha P. Genome-wide identification and analysis of SPL gene family in chickpea (Cicer arietinum L.). PROTOPLASMA 2024; 261:799-818. [PMID: 38378886 DOI: 10.1007/s00709-024-01936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
A transcription factor in plants encodes SQUAMOSA promoter binding protein-like (SPL) serves a broad spectrum of important roles for the plant, like, growth, flowering, and signal transduction. A gene family that encodes SPL proteins is documented in various model plant species, including Arabidopsis thaliana and Oryza sativa. Chickpea (Cicer arietinum), a leguminous crop, has not been thoroughly explored with regard to the SPL protein-encoding gene family. Chickpea SPL family genes were located and characterized computationally using a genomic database. Gene data of chickpea were obtained from the phytozome repository and was examined using bioinformatics methods. For investigating the possible roles of SPLs in chickpea, genome-wide characterization, expression, as well as structural analyses of this SPL gene family were performed. Cicer arietinum genome had 19 SPL genes, whereas, according to phylogenetic analysis, the SPLs in chickpea are segregated among four categories: Group-I has 2 introns, Group-II and IV have 1-2 introns (except CaSPL13 and CaSPL15 having 3 introns), and Group-III has 9 introns (except CaSPL1 and CaSPL11 with 1 and 8 introns, respectively). The SBP domain revealed that SPL proteins featured two zinc-binding sites, i.e., C3H and C2HC and one nuclear localization signal. All CaSPL proteins are found to contain highly conserved motifs, i.e., Motifs 1, 2, and 4, except CaSPL10 in which Motifs 1 and 4 were absent. Following analysis, it was found that Motifs 1 and 2 of the chickpea SBP domain are Zinc finger motifs, and Motif 4 includes a nuclear localization signal. All pairs of CaSPL paralogs developed by purifying selection. The CaSPL promoter investigation discovered cis-elements that are responsive to stress, light, and phytohormones. Examination of their expression patterns highlighted major CaSPLs to be evinced primarily among younger pods and flowers. Indicating their involvement in the plant's growth as well as development, along with their capacity to react as per different situations by handling the regulation of target gene's expression, several CaSPL genes are also expressed under certain stress conditions, namely, cold, salt, and drought. The majority of the CaSPL genes are widely expressed and play crucial roles in terms of the plant's growth, development, and responses to the environmental-stress conditions. Our work provides extensive insight into the gene family CaSPL, which might facilitate further studies related to the evolution and functions of the SPL genes for chickpea and other plant species.
Collapse
Affiliation(s)
- Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, 203201, U.P., India.
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 67, India
| | - Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
2
|
Sun X, Zhang L, Xu W, Zheng J, Yan M, Zhao M, Wang X, Yin Y. A Comprehensive Analysis of the Peanut SQUAMOSA Promoter Binding Protein-like Gene Family and How AhSPL5 Enhances Salt Tolerance in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1057. [PMID: 38674467 PMCID: PMC11055087 DOI: 10.3390/plants13081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
SPL (SQUAMOSA promoter binding protein-like), as one family of plant transcription factors, plays an important function in plant growth and development and in response to environmental stresses. Despite SPL gene families having been identified in various plant species, the understanding of this gene family in peanuts remains insufficient. In this study, thirty-eight genes (AhSPL1-AhSPL38) were identified and classified into seven groups based on a phylogenetic analysis. In addition, a thorough analysis indicated that the AhSPL genes experienced segmental duplications. The analysis of the gene structure and protein motif patterns revealed similarities in the structure of exons and introns, as well as the organization of the motifs within the same group, thereby providing additional support to the conclusions drawn from the phylogenetic analysis. The analysis of the regulatory elements and RNA-seq data suggested that the AhSPL genes might be widely involved in peanut growth and development, as well as in response to environmental stresses. Furthermore, the expression of some AhSPL genes, including AhSPL5, AhSPL16, AhSPL25, and AhSPL36, were induced by drought and salt stresses. Notably, the expression of the AhSPL genes might potentially be regulated by regulatory factors with distinct functionalities, such as transcription factors ERF, WRKY, MYB, and Dof, and microRNAs, like ahy-miR156. Notably, the overexpression of AhSPL5 can enhance salt tolerance in transgenic Arabidopsis by enhancing its ROS-scavenging capability and positively regulating the expression of stress-responsive genes. These results provide insight into the evolutionary origin of plant SPL genes and how they enhance plant tolerance to salt stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xinyu Wang
- Yantai Academy of Agricultural Sciences, Yantai 265500, China; (X.S.); (L.Z.); (W.X.); (J.Z.); (M.Y.); (M.Z.)
| | - Yan Yin
- Yantai Academy of Agricultural Sciences, Yantai 265500, China; (X.S.); (L.Z.); (W.X.); (J.Z.); (M.Y.); (M.Z.)
| |
Collapse
|
3
|
Ye X, Deng Q, Xu S, Huang Y, Wei D, Wang Z, Zhang H, Wang H, Tang Q. CsSPL13A directly binds and positively regulates CsFT and CsBAM to accelerate flowering in cucumber. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108395. [PMID: 38290342 DOI: 10.1016/j.plaphy.2024.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
Flowering is an important developmental transition that greatly affects the yield of many vegetable crops. In cucumber (Cucumis sativus), flowering is regulated by various factors including squamosa promoter-binding-like (SPL) family proteins. However, the role of CsSPL genes in cucumber flowering remains largely unknown. In this study, we cloned the squamosa promoter-binding-like protein 13A (CsSPL13A) gene, which encodes a highly conserved SBP-domain protein that acts as a transcription factor and localizes to the nucleus. Quantitative real-time PCR (qRT-PCR) analysis showed that CsSPL13A was mainly expressed in flowers, and its expression level increased significantly nearing the flowering stage. Additionally, compared with the wild type(WT), CsSPL13A-overexpressing transgenic cucumber plants (CsSPL13A-OE) showed considerable differences in flowering phenotypes, such as early flowering, increased number of male flowers, and longer flower stalks. CsSPL13A upregulated the expression of the flowering integrator gene Flowering Locus T (CsFT) and the sugar-mediated flowering gene β-amylase (CsBAM) in cucumber. Yeast one-hybrid and firefly enzyme reporter assays confirmed that the CsSPL13A protein could directly bind to the promoters of CsFT and CsBAM, suggesting that CsSPL13A works together with CsFT and CsBAM to mediate flowering in cucumber. Overall, our results provide novel insights into the regulatory network of flowering in cucumber as well as new ideas for the genetic improvement of cucumber varieties.
Collapse
Affiliation(s)
- Xu Ye
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Qinlin Deng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Shicheng Xu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Yifang Huang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Hongcheng Zhang
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China
| | - Hebing Wang
- Chongqing Academy of Agricultural Sciences, Chongqing, 401329, China.
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Li T, Zhang M, Li M, Wang X, Xing S. Molecular Characterization and Expression Analysis of YABBY Genes in Chenopodium quinoa. Genes (Basel) 2023; 14:2103. [PMID: 38003046 PMCID: PMC10671189 DOI: 10.3390/genes14112103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Plant-specific YABBY transcription factors play an important role in lateral organ development and abiotic stress responses. However, the functions of the YABBY genes in quinoa remain elusive. In this study, twelve YABBY (CqYAB) genes were identified in the quinoa genome, and they were distributed on nine chromosomes. They were classified into FIL/YAB3, YAB2, YAB5, INO, and CRC clades. All CqYAB genes consist of six or seven exons, and their proteins contain both N-terminal C2C2 zinc finger motifs and C-terminal YABBY domains. Ninety-three cis-regulatory elements were revealed in CqYAB gene promoters, and they were divided into six groups, such as cis-elements involved in light response, hormone response, development, and stress response. Six CqYAB genes were significantly upregulated by salt stress, while one was downregulated. Nine CqYAB genes were upregulated under drought stress, whereas six CqYAB genes were downregulated under cadmium treatment. Tissue expression profiles showed that nine CqYAB genes were expressed in seedlings, leaves, and flowers, seven in seeds, and two specifically in flowers, but no CqYAB expression was detected in roots. Furthermore, CqYAB4 could rescue the ino mutant phenotype in Arabidopsis but not CqYAB10, a paralog of CqYAB4, indicative of functional conservation and divergence among these YABBY genes. Taken together, these results lay a foundation for further functional analysis of CqYAB genes in quinoa growth, development, and abiotic stress responses.
Collapse
Affiliation(s)
- Tingting Li
- College of Life Science, Shanxi University, Taiyuan 030006, China; (T.L.); (M.L.); (X.W.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China;
| | - Mian Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China;
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030600, China
| | - Mengyao Li
- College of Life Science, Shanxi University, Taiyuan 030006, China; (T.L.); (M.L.); (X.W.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China;
| | - Xinxin Wang
- College of Life Science, Shanxi University, Taiyuan 030006, China; (T.L.); (M.L.); (X.W.)
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China;
| | - Shuping Xing
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China;
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Taiyuan 030600, China
| |
Collapse
|
5
|
He L, Peng X, Cao H, Yang K, Xiang L, Li R, Zhang F, Liu W. The NtSPL Gene Family in Nicotiana tabacum: Genome-Wide Investigation and Expression Analysis in Response to Cadmium Stress. Genes (Basel) 2023; 14:183. [PMID: 36672923 PMCID: PMC9859093 DOI: 10.3390/genes14010183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
The SQUAMOSA promoter binding protein-like (SPL)SPL family genes play an important role in regulating plant growth and development, synthesis of secondary metabolites, and resistance to stress. Understanding of the role of the SPL family in tobacco is still limited. In this study, 42 NtSPL genes were identified from the genome of the tobacco variety TN90. According to the results of the conserved motif and phylogenetic tree, the NtSPL genes were divided into eight subgroups, and the genes in the same subgroup showed similar gene structures and conserved domains. The cis-acting element analysis of the NtSPL promoters showed that the NtSPL genes were regulated by plant hormones and stresses. Twenty-eight of the 42 NtSPL genes can be targeted by miR156. Transcriptome data and qPCR results indicated that the expression pattern of miR156-targeted NtSPL genes was usually tissue specific. The expression level of miR156 in tobacco was induced by Cd stress, and the expression pattern of NtSPL4a showed a significant negative correlation with that of miR156. These results suggest that miR156-NtSPL4a may mediate the tobacco response to Cd stress. This study lays a foundation for further research on the function of the NtSPL gene and provides new insights into the involvement of NtSPL genes in the plant response to heavy metal stress.
Collapse
Affiliation(s)
- Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiang Peng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Hanping Cao
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Kunjian Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Lien Xiang
- College of Environmental Science & Engineering, China West Normal University, Nanchong 637009, China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Fangyuan Zhang
- School of Life Science, Southwest University, Chongqing 400715, China
| | - Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|