1
|
Khan FU, Khan H, Ullah K, Nawaz S, Abdullah, Khan MJ, Ahmed S, Ilyas M, Ali A, Ullah I, Sohail A, Hussain S, Ahmad F, Faisal, Sufyan R, Hayat A, Hanif T, Bibi F, Hayat M, Ullah R, Khan IU, Ali RH, Hasni MS, Ali H, Bilal M, Peralta S, Buchert R, Zehri Z, Hassan G, Liaqat K, Zahid M, Shah K, Mikitie O, Haack TB, Ji W, Lakhani SA, Ansar M, Ahmad W. Clinical and genetic investigation of 14 families with various forms of short stature syndromes. Clin Genet 2024; 106:347-353. [PMID: 38774940 DOI: 10.1111/cge.14550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 08/13/2024]
Abstract
Skeletal dysplasias are a heterogeneous group of disorders presenting mild to lethal defects. Several factors, such as genetic, prenatal, and postnatal environmental may contribute to reduced growth. Fourteen families of Pakistani origin, presenting the syndromic form of short stature either in the autosomal recessive or autosomal dominant manner were clinically and genetically investigated to uncover the underlying genetic etiology. Homozygosity mapping, whole exome sequencing, and Sanger sequencing were used to search for the disease-causing gene variants. In total, we have identified 13 sequence variants in 10 different genes. The variants in the HSPG2 and XRCC4 genes were not reported previously in the Pakistani population. This study will expand the mutation spectrum of the identified genes and will help in improved diagnosis of the syndromic form of short stature in the local population.
Collapse
Affiliation(s)
- Fati Ullah Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammal Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Kifayat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shoaib Nawaz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Human Genetics-Precision Medicine Program, Sidra Medicine, Doha, Qatar
| | - Abdullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Muhammad Javed Khan
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sohail Ahmed
- Institute of Biochemistry, University of Balochistan, Quetta, Pakistan
| | - Muhammad Ilyas
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amjad Ali
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Imran Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamir Sohail
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shabir Hussain
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Clinical and Molecular Metabolism Research Program (CAMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Farooq Ahmad
- Department of Biochemistry, Women University Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Faisal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Raza Sufyan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amir Hayat
- Department Biochemistry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Tooba Hanif
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fatima Bibi
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Maria Hayat
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rehmat Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Inam Ullah Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Raja Hussain Ali
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Teaching Hospital, Boston, Massachusetts, USA
| | | | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Bilal
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Institute for Medical Genetics and Applied Genomics, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Susana Peralta
- Institute for Medical Genetics and Applied Genomics, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Rebecca Buchert
- Institute for Medical Genetics and Applied Genomics, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Zamrud Zehri
- Department of Gynecology, Civil Hospital Quetta, Quetta, Pakistan
| | - Gul Hassan
- Department of Biochemistry, Shah Abdul Latif University, Khairpur, Sindh, Pakistan
| | - Khurrum Liaqat
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Zahid
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Khadim Shah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Outi Mikitie
- Clinical and Molecular Metabolism Research Program (CAMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Centre, Folkhälsan Institute of Genetics, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Tobias B Haack
- Institute for Medical Genetics and Applied Genomics, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
2
|
Ghafoor S, Rafiq MA, Abbas Shah ST, Ansar M, Paton T, Ajmal M, Agha Z, Qamar R, Azam M. KIF1A novel frameshift variant p.(Ser887Profs*64) exhibits clinical heterogeneity in a Pakistani family with hereditary sensory and autonomic neuropathy type IIC. Int J Neurosci 2024; 134:665-675. [PMID: 36282036 DOI: 10.1080/00207454.2022.2140428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/19/2022] [Indexed: 10/31/2022]
Abstract
Background: Hereditary sensory and autonomic neuropathies (HSANs) are rare heterogeneous group of neurological disorders caused by peripheral nerve deterioration. The HSANs sub-clinical classes have clinical and genetic overlap which often lead to misdiagnosis. In the present study a Pakistani family with five affected members suffering from severe neuropathy were genetically analyzed to identify the disease causative element in the family. Methods: Genome wide high-density single nucleotide polymorphism (SNP) microarray analysis was carried out followed by whole exome sequencing of the affected proband and another affected sibling. Shared homozygous regions in all severely affected members were identified through homozygosity mapping approach. Results: The largest homozygous region of 14.1 Mb shared by the five severely affected members of the family was identified on chromosome 2. Subsequent exome sequencing identified a novel single nucleotide deletion c.2658del; p.(Ser887Profs*64) in KIF1A. Segregation analysis revealed that this mutation was homozygous in all five affected individuals of the family with severe clinical manifestation, while members of the family that were heterozygous carriers shared abnormal skin features (scaly skin) only with the homozygous affected members. Conclusions: A novel frameshift mutation p.(Ser887Profs*64) in KIF1A is the potential cause of severe HSANIIC in a Pakistani family along with incomplete penetrance in mutation carriers. We demonstrate that using a combination of different techniques not only strengthens the gene finding approach but also helps in proper sub-clinical characterization along with identification of mutated alleles exhibiting incomplete penetrance leading to intrafamilial clinical variability in HSAN group of inherited diseases.
Collapse
Affiliation(s)
- Saima Ghafoor
- Translational Genomics Laboratory, COMSATS University Islamabad, Pakistan
| | - Muhammad Arshad Rafiq
- Translational Genomics Laboratory, COMSATS University Islamabad, Pakistan
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Muhammad Ansar
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Tara Paton
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics (TCAG), The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada
| | - Muhammad Ajmal
- Translational Genomics Laboratory, COMSATS University Islamabad, Pakistan
| | - Zehra Agha
- Translational Genomics Laboratory, COMSATS University Islamabad, Pakistan
| | - Raheel Qamar
- Pakistan Academy of Sciences, Islamabad, Pakistan
- Science and Technology Sector, ICESCO, Rabat, Morocco
| | - Maleeha Azam
- Translational Genomics Laboratory, COMSATS University Islamabad, Pakistan
| |
Collapse
|
3
|
Janakiraman V, Sudhan M, Alzahrani KJ, Alshammeri S, Ahmed SSSJ, Patil S. Dynamics of TUBB protein with five majorly occurring natural variants: a risk of cortical dysplasia. J Mol Model 2023; 29:100. [PMID: 36928665 DOI: 10.1007/s00894-023-05506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Beta-tubulin (TUBB) protein is one of the components of the microtubule cytoskeleton that plays a critical role in the central nervous system. Genetic variants of TUBB cause cortical dysplasia, a developmental brain defect implicated in axonal guidance and the neuron migration. In this study, we assess pathogenic variants (Q15K, Y222F, M299V, V353I, and E401K) of TUBB protein and compared with non-pathogenic variant G235S to determine their impact on protein dynamic to cause cortical dysplasia. Among the analyzed variants, Q15K, Y222F, M299V, and E401K were noticed to have deleterious effect. Then, variant structures were modeled and their affinity with their known cofactor Guanosine-5'-triphosphate (GTP) was assessed which showed diverse binding energies ranged between (-7.436 to -6.950 kcal/mol) for the variants compared to wild-type (-7.428 kcal/mol). Finally, the molecular dynamics simulation of each variant was investigated which showed difference in trajectory between the pathogenic and non-pathogenic variant. Our analysis suggests change in amino acid residue of TUBB structure has notably affects the protein flexibility and their interactions with known cofactor. Overall, our findings provide insight on the relationship between TUBB variants and their structural dynamics that may cause diverse effects leading to cortical dysplasia.
Collapse
Affiliation(s)
- V Janakiraman
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - M Sudhan
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Saleh Alshammeri
- Department of Optometry, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Shiek S S J Ahmed
- Drug Discovery and Multi-Omics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, USA
| |
Collapse
|