1
|
Lu J, Wang J, Dai R, Wang X. The mitochondrial genome sequences of eleven leafhopper species of Batracomorphus (Hemiptera: Cicadellidae: Iassinae) reveal new gene rearrangements and phylogenetic implications. PeerJ 2024; 12:e18352. [PMID: 39465150 PMCID: PMC11505954 DOI: 10.7717/peerj.18352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Batracomorphus is the most diverse and widely distributed genus of Iassinae. Nevertheless, there has been no systematic analysis of the genome structure and phylogenetic relationships of the genus. To determine the characteristics of the mitogenomes of Batracomorphus species as well as the phylogenetic relationships between them, we sequenced and compared the mitogenomes of 11 representative Batracomorphus species. The results revealed that the mitogenomes of the 11 Batracomorphus species exhibited highly similar gene and nucleotide composition, and codon usage compared with other reported mitogenomes of Iassinae. Of these 11 species, we found that the mitogenomes of four species were rearranged in the region from trnI-trnQ-trnM to trnQ-trnI-trnM, whereas the remaining species presented a typical gene order. The topologies of six phylogenetic trees were in agreement. Eurymelinae consistently formed paraphyletic groups. Ledrinae and Evacanthinae formed sister taxa within the same clade. Similarly, Typhlocybinae and Mileewinae consistently clustered together. All phylogenetic trees supported the monophyly of Iassinae, indicating its evolutionary distinctiveness while also revealing its sister relationship with Coelidiinae. Notably, the nodes for all species of the genus Batracomorphus were well supported and these taxa clustered into a large branch that indicated monophyly. Within this large branch, four Batracomorphus species with a gene rearrangement (trnQ-trnI-trnM) exhibited distinctive clustering, which divided the large branch into three minor branches. These findings expand our understanding of the taxonomy, evolution, genetics, and systematics of the genus Batracomorphus and broader Iassinae groups.
Collapse
Affiliation(s)
- Jikai Lu
- Institute of Entomology, Guizhou University; The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China
| | - Jiajia Wang
- College of Biology and Food Engineering, Chuzhou University, Chuzhou, Anhui, China
| | - Renhuai Dai
- Institute of Entomology, Guizhou University; The Provincial Key Laboratory for Agricultural Pest Management Mountainous Region, Guiyang, Guizhou, China
| | - Xianyi Wang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Key Laboratory of Biology and Medical Engineering, School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Zhang G, Gao M, Chen Y, Wang Y, Gan T, Zhu F, Liu H. The First Complete Mitochondrial Genome of the Genus Litostrophus: Insights into the Rearrangement and Evolution of Mitochondrial Genomes in Diplopoda. Genes (Basel) 2024; 15:254. [PMID: 38397243 PMCID: PMC10888367 DOI: 10.3390/genes15020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
This study presents the complete mitochondrial genome (mitogenome) of Litostrophus scaber, which is the first mitogenome of the genus Litostrophus. The mitogenome is a circular molecule with a length of 15,081 bp. The proportion of adenine and thymine (A + T) was 69.25%. The gene ND4L used TGA as the initiation codon, while the other PCGs utilized ATN (A, T, G, C) as the initiation codons. More than half of the PCGs used T as an incomplete termination codon. The transcription direction of the L. scaber mitogenome matched Spirobolus bungii, in contrast to most millipedes. Novel rearrangements were found in the L. scaber mitogenome: trnQ -trnC and trnL1- trnP underwent short-distance translocations and the gene block rrnS-rrnL-ND1 moved to a position between ND4 and ND5, resulting in the formation of a novel gene order. The phylogenetic analysis showed that L. scaber is most closely related to S. bungii, followed by Narceus magnum. These findings enhance our understanding of the rearrangement and evolution of Diplopoda mitogenomes.
Collapse
Affiliation(s)
- Gaoji Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (G.Z.); (M.G.); (Y.C.); (Y.W.); (F.Z.)
| | - Ming Gao
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (G.Z.); (M.G.); (Y.C.); (Y.W.); (F.Z.)
| | - Yukun Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (G.Z.); (M.G.); (Y.C.); (Y.W.); (F.Z.)
| | - Yinuo Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (G.Z.); (M.G.); (Y.C.); (Y.W.); (F.Z.)
| | - Tianyi Gan
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Fuyuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (G.Z.); (M.G.); (Y.C.); (Y.W.); (F.Z.)
| | - Hongyi Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (G.Z.); (M.G.); (Y.C.); (Y.W.); (F.Z.)
| |
Collapse
|
3
|
Liu J, Yu J, Yu X, Bi W, Yang H, Xue F, Zhang G, Zhang J, Yi D, Ma R, Zhou Y, Lan G, Gu J, Wu W, Li Z, Qi G. Complete Mitogenomes of Ticks Ixodes acutitarsus and Ixodes ovatus Parasitizing Giant Panda: Deep Insights into the Comparative Mitogenomic and Phylogenetic Relationship of Ixodidae Species. Genes (Basel) 2022; 13:2049. [PMID: 36360286 PMCID: PMC9691169 DOI: 10.3390/genes13112049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 04/11/2024] Open
Abstract
Ticks rank second in the world as vectors of disease. Tick infestation is one of the factors threatening the health and survival of giant pandas. Here, we describe the mitogenomes of Ixodes acutitarsus and Ixodes ovatus parasitizing giant pandas, and perform comparative and phylogenetic genomic analyses on the newly sequenced and other available mitogenomes of hard ticks. All six newly determined mitogenomes contain a typical gene component and share an ancient Arthropoda gene arrangement pattern. Our study suggests that I. ovatus is a species complex with high genetic divergence, indicating that different clades of I. ovatus represent distinct species. Comparative mitogenomic analyses show that the average A + T content of Ixodidae mitogenomes is 78.08%, their GC-skews are strongly negative, while AT-skews fluctuate around 0. A large number of microsatellites are detected in Ixodidae mitogenomes, and the main microsatellite motifs are mononucleotide A and trinucleotide AAT. We summarize five gene arrangement types, and identify the trnY-COX1-trnS1-COX2-trnK-ATP8-ATP6-COX3-trnG fragment is the most conserved region, whereas the region near the control region is the rearrangement hotspot in Ixodidae mitogenomes. The phylogenetic trees based on 15 genes provide a very convincing relationship (Ixodes + (Robertsicus + ((Bothriocroton + Haemaphysalis) + (Amblyomma + (Dermacentor + (Rhipicentor + (Hyalomma + Rhipicephalus))))))) with very strong supports. Remarkably, Archaeocroton sphenodonti is embedded in the Haemaphysalis clade with strong supports, resulting in paraphyly of the Haemaphysalis genus, so in-depth morphological and molecular studies are essential to determine the taxonomic status of A. sphenodonti and its closely related species. Our results provide new insights into the molecular phylogeny and evolution of hard ticks, as well as basic data for population genetics assessment and efficient surveillance and control for the giant panda-infesting ticks.
Collapse
Affiliation(s)
- Jiabin Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Jiaojiao Yu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Xiang Yu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Wenlei Bi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Hong Yang
- Management Center of Daxiangling Nature Reserve in Yingjing County, Ya’an 625200, China
| | - Fei Xue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Gexiang Zhang
- College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu 610059, China
| | - Jindong Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Dejiao Yi
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Rui Ma
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Yanshan Zhou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Guanwei Lan
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Jiang Gu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Wei Wu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Zusheng Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Guilan Qi
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China
| |
Collapse
|