1
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Oocyte maturation, blastocyst and embryonic development are mediated and enhanced via hormesis. Food Chem Toxicol 2024; 192:114941. [PMID: 39153727 DOI: 10.1016/j.fct.2024.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The present paper provides the first integrative assessment of the capacity of dietary, endogenous and other agents to induce hormetic dose responses in oocytes, their supportive cells such as granulosa cells, blastocyst formation and early stage embryo development with the goal of improving fertility and reproductive success. The analysis showed that numerous agents enhance oocyte maturation and blastocyst/embryonic development in an hormetic fashion. These findings indicate that numerous agents improve oocyte-related biological functioning under normal conditions as well as enhancing its capacity to prevent damage from numerous chemical toxins and related stressor agents, including heat and age-related processes in pre-post conditioning and concurrent exposures. The present assessment suggests that hormetic-based lifestyles and dietary interventions may offer the potential to enhance healthy reproductive performance with applications to animal husbandry and human biology. The present findings also significantly extend the generality of the hormesis dose response concept to multiple fundamental biological processes (i.e., oocyte maturation, fertilization and blastocyst/embryo development).
Collapse
Affiliation(s)
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Gaurav Dhawan
- Sri Guru Ram Das (SGRD), University of Health Sciences, Amritsar, India.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | - Evgenios Agathokleous
- School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| |
Collapse
|
2
|
Basini G, Grasselli F. Role of Melatonin in Ovarian Function. Animals (Basel) 2024; 14:644. [PMID: 38396612 PMCID: PMC10885985 DOI: 10.3390/ani14040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Melatonin is a hormone mainly produced by the pineal gland in the absence of light stimuli. The light, in fact, hits the retina, which sends a signal to the suprachiasmatic nucleus, which inhibits the synthesis of the hormone by the epiphysis. Mostly by interacting with MT1/MT2 membrane receptors, melatonin performs various physiological actions, among which are its regulation of the sleep-wake cycle and its control of the immune system. One of its best known functions is its non-enzymatic antioxidant action, which is independent from binding with receptors and occurs by electron donation. The hormone is also an indicator of the photoperiod in seasonally reproducing mammals, which are divided into long-day and short-day breeders according to the time of year in which they are sexually active and fertile. It is known that melatonin acts at the hypothalamic-pituitary-gonadal axis level in many species. In particular, it inhibits the hypothalamic release of GnRH, with a consequent alteration of FSH and LH levels. The present paper mainly aims to review the ovarian effect of melatonin.
Collapse
Affiliation(s)
- Giuseppina Basini
- Dipartimento di Scienze Medico-Veterinarie, Università degli Studi di Parma, 43126 Parma, Italy;
| | | |
Collapse
|
3
|
Abudureyimu G, Wu Y, Chen Y, Wang L, Hao G, Yu J, Wang J, Lin J, Huang J. MiR-134-3p targets HMOX1 to inhibit ferroptosis in granulosa cells of sheep follicles. J Ovarian Res 2024; 17:3. [PMID: 38166987 PMCID: PMC10763389 DOI: 10.1186/s13048-023-01328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The intricate interplay of gene expression within ovarian granulosa cells (GCs) is not fully understood. This study aimed to investigate the miRNA regulatory mechanisms of ferroptosis during the process of follicle development in lamb GCs. METHODS Employing transcriptome sequencing, we compared differentially expressed mRNAs (DE-mRNAs) and miRNAs (DE-miRNAs) in GCs from lambs treated with follicle-stimulating hormone (FL) to untreated controls (CL). We further screened differentially expressed ferroptosis-related genes and identified potential miRNA regulatory factors. The expression patterns of HMOX1 and miRNAs in GCs were validated using qRT‒PCR and Western blotting. Additionally, we investigated the regulatory effect of oar-miR-134-3p on HMOX1 and its function in ferroptosis through cell transfection and erastin treatment. RESULTS We identified a total of 4,184 DE-mRNAs and 304 DE-miRNAs. The DE-mRNAs were mainly enriched in ferroptosis, insulin resistance, and the cell cycle. Specifically, we focused on the differential expression of ferroptosis-related genes. Notably, the ferroptosis-related genes HMOX1 and SLC3A2, modulated by DE-miRNAs, were markedly suppressed in FLs. Experimental validation revealed that HMOX1 was significantly downregulated in FL and large follicles, while oar-miR-134-3p was significantly upregulated compared to that in the CLs. HMOX1 expression was regulated by the targeting effect of oar-miR-134-3p. Functional assays further revealed that modulation of oar-miR-134-3p influenced HMOX1 expression and altered cellular responses to ferroptosis induction by erastin. CONCLUSION This study suggested that oar-miR-134-3p and HMOX1 may be one of the pathways regulating ferroptosis in GCs. This finding provides new clues to understanding the development and regulatory process of follicles.
Collapse
Affiliation(s)
- Gulimire Abudureyimu
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture (MOA), Urumqi, 830026, Xinjiang, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, 830026, Xinjiang, China
- Institute of AnimalBiotechnology, Xinjiang Academy of Animal Science, Urumqi, 830026, Xinjiang, China
| | - Yangsheng Wu
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture (MOA), Urumqi, 830026, Xinjiang, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, 830026, Xinjiang, China
- Institute of AnimalBiotechnology, Xinjiang Academy of Animal Science, Urumqi, 830026, Xinjiang, China
| | - Ying Chen
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture (MOA), Urumqi, 830026, Xinjiang, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, 830026, Xinjiang, China
- Institute of AnimalBiotechnology, Xinjiang Academy of Animal Science, Urumqi, 830026, Xinjiang, China
| | - Liqin Wang
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture (MOA), Urumqi, 830026, Xinjiang, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, 830026, Xinjiang, China
- Institute of AnimalBiotechnology, Xinjiang Academy of Animal Science, Urumqi, 830026, Xinjiang, China
| | - Geng Hao
- Institute of Animal Sciences, Xinjiang Academy of Animal Science, Urumqi, 830000, Xinjiang, China
| | - Jianguo Yu
- Institute of Animal Sciences, Xinjiang Academy of Animal Science, Urumqi, 830000, Xinjiang, China
| | - Jianguo Wang
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture (MOA), Urumqi, 830026, Xinjiang, China
- Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, 830026, Xinjiang, China
- Institute of AnimalBiotechnology, Xinjiang Academy of Animal Science, Urumqi, 830026, Xinjiang, China
| | - Jiapeng Lin
- Key Laboratory of Genetics, Breeding and Reproduction of Grass-Feeding Livestock, Ministry of Agriculture (MOA), Urumqi, 830026, Xinjiang, China.
- Key Laboratory of Animal Biotechnology of Xinjiang, Urumqi, 830026, Xinjiang, China.
- Institute of AnimalBiotechnology, Xinjiang Academy of Animal Science, Urumqi, 830026, Xinjiang, China.
| | - Juncheng Huang
- Institute of Animal Sciences, Xinjiang Academy of Animal Science, Urumqi, 830000, Xinjiang, China.
| |
Collapse
|