1
|
Rudisill SS, Massel DH, Hornung AL, Kia C, Patel K, Aboushaala K, Chukwuemeka M, Wong AYL, Barajas JN, Mallow GM, Toro SJ, Singh H, Gawri R, Louie PK, Phillips FM, An HS, Samartzis D. Answer to the letter to the editor of Y. Wang, et al. concerning "Is ABO blood type a risk factor for adjacent segment degeneration after lumbar spine fusion?" by S.S. Rudisill, et al. (Eur Spine J [2024]: doi 10.1007/s00586-024-08516-y). EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024:10.1007/s00586-024-08624-9. [PMID: 39708131 DOI: 10.1007/s00586-024-08624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Affiliation(s)
- Samuel S Rudisill
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Dustin H Massel
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Alexander L Hornung
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Cameron Kia
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Karan Patel
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Khaled Aboushaala
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Mbagwu Chukwuemeka
- Department of Orthopaedic Surgery, Louisiana State University Health, Shreveport, LA, USA
| | - Arnold Y L Wong
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - J Nicolas Barajas
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - G Michael Mallow
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Sheila J Toro
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Harmanjeet Singh
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Rahul Gawri
- Department of Surgery, McGill University, Montréal, QC, Canada
| | | | - Frank M Phillips
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Howard S An
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA
| | - Dino Samartzis
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA.
- The International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
2
|
Aboushaala K, Chee AV, Adnan D, Toro SJ, Singh H, Savoia A, Dhillon ES, Yuh C, Dourdourekas J, Patel IK, Vucicevic R, Espinoza‐Orias AA, Martin JT, Oh C, Keshavarzian A, Albert HB, Karppinen J, Kocak M, Wong AYL, Goldberg EJ, Phillips FM, Colman MW, Williams FMK, Borgia JA, Naqib A, Green SJ, Forsyth CB, An HS, Samartzis D. Gut microbiome dysbiosis is associated with lumbar degenerative spondylolisthesis in symptomatic patients. JOR Spine 2024; 7:e70005. [PMID: 39398942 PMCID: PMC11467165 DOI: 10.1002/jsp2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
Background Lumbar degenerative spondylolisthesis (LDS), characterized as degeneration of the intervertebral disc and structural changes of the facet joints, is a condition with varying degrees of instability that may lead to pain, canal stenosis, and subsequent surgical intervention. However, the etiology of LDS remains inconclusive. Gut microbiome dysbiosis may stimulate systemic inflammation in various disorders. However, the role of such dysbiosis upon spine health remains under-studied. The current study assessed the association of gut microbiome dysbiosis in symptomatic patients with or without LDS. Methods A cross-sectional analysis within the framework of a prospective study was performed. DNA was extracted from fecal samples collected from adult symptomatic patients with (n = 21) and without LDS (n = 12). Alpha and beta diversity assessed differences in fecal microbial community between groups. Taxon-by-taxon analysis identified microbial features with differential relative abundance between groups. Subject demographics and imaging parameters were also assessed. Results There was no significant group differences in age, sex, race, body mass index, smoking/alcohol history, pain profiles, spinopelvic alignment, and Modic changes (p >0.05). LDS subjects had significantly higher disc degeneration severity (p = 0.018) and alpha diversity levels compared to non-LDS subjects (p = 0.002-0.003). Significant differences in gut microbial community structure were observed between groups (p = 0.046). Subjects with LDS exhibited distinct differences at the phylum level, with a significantly higher Firmicutes to Bacteroidota ratio compared to non-LDS (p = 0.003). Differential relative abundance analysis identified six taxa with significant differences between the two groups, with LDS demonstrating an increase in putative pro-inflammatory bacteria (Dialister, CAG-352) and a decrease in anti-inflammatory bacteria (Slackia, Escherichia-Shigella). Conclusion This study is the first to report a significant association of gut microbiome dysbiosis and LDS in symptomatic patients, noting pro-inflammatory bacterial taxa. This work provides a foundation for future studies addressing the role of the gut microbiome in association with spine health and disease.
Collapse
Affiliation(s)
- Khaled Aboushaala
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Ana V. Chee
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Darbaz Adnan
- Center for Integrated Microbiome & Chronobiology Research, Rush Medical College, Rush University Medical CenterChicagoIllinoisUSA
| | - Sheila J. Toro
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Harmanjeet Singh
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Andrew Savoia
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Ekamjeet S. Dhillon
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Catherine Yuh
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Jake Dourdourekas
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Ishani K. Patel
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Rajko Vucicevic
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | | | - John T. Martin
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Chundo Oh
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Ali Keshavarzian
- Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Hanne B. Albert
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Jaro Karppinen
- Research Unit of Health Sciences and TechnologyUniversity of OuluOuluFinland
| | - Mehmet Kocak
- Department of Radiology & Nuclear MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Arnold Y. L. Wong
- Department of Rehabilitation SciencesThe Hong Kong Polytechnic UniversityHong KongChina
| | - Edward J. Goldberg
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Frank M. Phillips
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Matthew W. Colman
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Frances M. K. Williams
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
- Department of Twins Research and Genetic EpidemiologyKing's CollegeLondonUK
| | - Jeffrey A. Borgia
- Departments of Anatomy & Cell Biology and PathologyRush University Medical CenterChicagoIllinoisUSA
| | - Ankur Naqib
- Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | - Stefan J. Green
- Department of Internal MedicineRush University Medical CenterChicagoIllinoisUSA
| | | | - Howard S. An
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Dino Samartzis
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| |
Collapse
|
3
|
Rajasekaran S, Vasudevan G, Tangavel C, Ramachandran K, Nayagam SM, Muthurajan R, Gopalakrishnan C, Anand SV, Shetty AP, Kanna RM. Does the gut microbiome influence disc health and disease? The interplay between dysbiosis, pathobionts, and disc inflammation: a pilot study. Spine J 2024; 24:1952-1963. [PMID: 38925301 DOI: 10.1016/j.spinee.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND CONTEXT Gut microbiome alterations resulting in inflammatory responses have been implicated in many distant effects on different organs. However, its influence on disc health is still not fully investigated. PURPOSE Our objective was to document the gut biome in healthy volunteers and patients with disc degeneration and to understand the role of gut dysbiosis on human disc health. STUDY DESIGN Experimental case-control study. PATIENT SAMPLE We included 40 patients with disc degeneration (DG) and 20 healthy volunteers (HV). HV comprised of age groups 30 to 60 years with no known record of back pain and no clinical comorbidities, with normal MRI. Diseased group (DG) were patients in the same age group undergoing surgery for disc disease (disc herniation-25; discogenic stenosis-15) and without instability (with Modic-20; and non-Modic-20). OUTCOME MEASURES N/A. METHODS We analyzed 16S V3-V4 rDNA gut metagenome from 20 healthy volunteers (HV) and compared the top signature genera from 40 patients with disc degeneration (DG) across Modic and non-Modic groups. Norgen Stool DNA Kit was used for DNA extraction from ∼200 mg of each faecal sample collected using the Norgen Stool Collection Kit.16S V3-V4 rDNA amplicons were generated with universal bacterial primers 341F and 806R and amplified with Q5 High-Fidelity DNA Polymerase. Libraries were sequenced with 250×2 PE to an average of 0.1 million raw reads per sample (Illumina Novaseq 6000). Demultiplexed raw data was assessed with FastQC, and adapter trimmed reads >Q30 reads were processed in the QIME2 pipeline. Serum C-reactive protein (CRP) was measured by the immunoturbimetry method and Fatty acid-binding protein 5 (FABP5) was measured in albumin-globulin-depleted plasma through global proteome analysis. RESULTS We observed significant gut dysbiosis between HV and DG and also between the Modic and non-Modic groups. In the Modic group, commensals Bifidobacterium and Ruminococcus were significantly depleted, while pathobionts Streptococcus, Prevotella, and Butryvibrio were enriched. Firmicutes/Bacteroidetes ratio was decreased in DG (Modic-0.62, non-Modic-0.43) compared to HV (0.70). Bacteria-producing beneficial short-chain fatty acids were also depleted in DG. Elevated serum CRP and increased FABP5 were observed in DG. CONCLUSION The study revealed gut dysbiosis, an altered Firmicutes/Bacteroidetes ratio, reduced SCFA-producing bacteria, and increased systemic and local inflammation in association with disc disease, especially in Modic changes. The findings have considerable importance for our understanding and prevention of disc degeneration.
Collapse
Affiliation(s)
| | - Gowdaman Vasudevan
- Ganga Research Centre, Vattamalaipalayam, NGGO Colony Post, SF No.442, Coimbatore, Tamil Nadu, India
| | - Chitraa Tangavel
- Ganga Research Centre, Vattamalaipalayam, NGGO Colony Post, SF No.442, Coimbatore, Tamil Nadu, India
| | - Karthik Ramachandran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, India
| | - Sharon Miracle Nayagam
- Ganga Research Centre, Vattamalaipalayam, NGGO Colony Post, SF No.442, Coimbatore, Tamil Nadu, India
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Lawley Rd, Coimbatore, Tamil Nadu, India
| | - Chellappa Gopalakrishnan
- Ganga Research Centre, Vattamalaipalayam, NGGO Colony Post, SF No.442, Coimbatore, Tamil Nadu, India
| | - Sri Vijay Anand
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, India
| | - Ajoy Prasad Shetty
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, India
| | - Rishi Mugesh Kanna
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Rd, Coimbatore, India
| |
Collapse
|
4
|
Kamel M, Aleya S, Alsubih M, Aleya L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J Pers Med 2024; 14:217. [PMID: 38392650 PMCID: PMC10890469 DOI: 10.3390/jpm14020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
Infectious diseases have long posed a significant threat to global health and require constant innovation in treatment approaches. However, recent groundbreaking research has shed light on a previously overlooked player in the pathogenesis of disease-the human microbiome. This review article addresses the intricate relationship between the microbiome and infectious diseases and unravels its role as a crucial mediator of host-pathogen interactions. We explore the remarkable potential of harnessing this dynamic ecosystem to develop innovative treatment strategies that could revolutionize the management of infectious diseases. By exploring the latest advances and emerging trends, this review aims to provide a new perspective on combating infectious diseases by targeting the microbiome.
Collapse
Affiliation(s)
- Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 11221, Egypt
| | - Sami Aleya
- Faculty of Medecine, Université de Bourgogne Franche-Comté, Hauts-du-Chazal, 25030 Besançon, France;
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, Université de Bourgogne Franche-Comté, UMR CNRS 6249, La Bouloie, 25030 Besançon, France;
| |
Collapse
|
5
|
Zolnikova O, Dzhakhaya N, Bueverova E, Sedova A, Kurbatova A, Kryuchkova K, Butkova T, Izotov A, Kulikova L, Yurku K, Chekulaev P, Zaborova V. The Contribution of the Intestinal Microbiota to the Celiac Disease Pathogenesis along with the Effectiveness of Probiotic Therapy. Microorganisms 2023; 11:2848. [PMID: 38137992 PMCID: PMC10745538 DOI: 10.3390/microorganisms11122848] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The development of many human disorders, including celiac disease (CD), is thought to be influenced by the microbiota of the gastrointestinal tract and its metabolites, according to current research. This study's goal was to provide a concise summary of the information on the contribution of the intestinal microbiota to the CD pathogenesis, which was actively addressed while examining the reported pathogenesis of celiac disease (CD). We assumed that a change in gluten tolerance is formed under the influence of a number of different factors, including genetic predisposition and environmental factors. In related investigations, researchers have paid increasing attention to the study of disturbances in the composition of the intestinal microbiota and its functional activity in CD. A key finding of our review is that the intestinal microbiota has gluten-degrading properties, which, in turn, may have a protective effect on the development of CD. The intestinal microbiota contributes to maintaining the integrity of the intestinal barrier, preventing the formation of a "leaky" intestine. On the contrary, a change in the composition of the microbiota can act as a significant link in the pathogenesis of gluten intolerance and exacerbate the course of the disease. The possibility of modulating the composition of the microbiota by prescribing probiotic preparations is being considered. The effectiveness of the use of probiotics containing Lactobacillus and Bifidobacterium bacteria in experimental and clinical studies as a preventive and therapeutic agent has been documented.
Collapse
Affiliation(s)
- Oxana Zolnikova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Natiya Dzhakhaya
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Elena Bueverova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Alla Sedova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Anastasia Kurbatova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Kira Kryuchkova
- Institute of Public Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Tatyana Butkova
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
| | - Alexander Izotov
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
| | - Ludmila Kulikova
- Institute of Biomedical Chemistry, Biobanking Group, 109028 Moscow, Russia; (T.B.); (A.I.); (L.K.)
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kseniya Yurku
- State Research Center—Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, 123098 Moscow, Russia;
| | - Pavel Chekulaev
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| | - Victoria Zaborova
- Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (O.Z.); (N.D.); (E.B.); (A.S.); (A.K.); (P.C.)
| |
Collapse
|