1
|
Yang L, Niu Z, Ma Z, Wu X, Vong CT, Li G, Feng Y. Exploring the clinical implications and applications of exosomal miRNAs in gliomas: a comprehensive study. Cancer Cell Int 2024; 24:323. [PMID: 39334350 PMCID: PMC11437892 DOI: 10.1186/s12935-024-03507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Gliomas are aggressive brain tumors associated with poor prognosis and limited treatment options due to their invasive nature and resistance to current therapeutic modalities. Research suggests that exosomal microRNAs have emerged as key players in intercellular communication within the tumor microenvironment, influencing tumor progression and therapeutic responses. Exosomal microRNAs (miRNAs), small non-coding RNAs, are crucial in glioma development, invasion, metastasis, angiogenesis, and immune evasion by binding to target genes. This comprehensive review examines the clinical relevance and implications of exosomal miRNAs in gliomas, highlighting their potential as diagnostic biomarkers, therapeutic targets and prognosis biomarker. Additionally, we also discuss the limitations of current exsomal miRNA treatments and address challenges and propose future directions for leveraging exosomal miRNAs in precision oncology for glioma management.
Collapse
Affiliation(s)
- Liang Yang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhen Niu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zhixuan Ma
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xiaojie Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- Macau Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510100, China.
| | - Ying Feng
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Zhang M, Xu T, Tong D, Yu X, Liu B, Jiang L, Liu K. MiR-136-5p in cancer: Roles, mechanisms, and chemotherapy resistance. Gene 2024; 909:148265. [PMID: 38346459 DOI: 10.1016/j.gene.2024.148265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
MicroRNAs (miRNAs) have emerged as important regulators of gene expression, and the deregulation of their activity has been linked to the onset and progression of a variety of human malignancies. Among these miRNAs, miR-136-5p has attracted significant attention due to its diverse roles in cancer biology. Mostly, miR-136-5p is downregulated in malignancies. It could inhibit viability, proliferation, migration, invasion and promote apoptosis of tumor cells. This review article provides a comprehensive overview of the current understanding of miR-136-5p in different sorts of human cancers: genital tumors, head and neck tumors, tumors from the digestive and urinary systems, skin cancers, neurologic tumors, pulmonary neoplasms and other cancers by discussing its molecular mechanisms, functional roles, and impact in chemotherapies. In conclusion, miR-136-5p could be a promising new biomarker and potential clinical therapeutic target.
Collapse
Affiliation(s)
- Manlin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Deming Tong
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Hasanpour Segherlou Z, Nouri-Vaskeh M, Noroozi Guilandehi S, Baghbanzadeh A, Zand R, Baradaran B, Zarei M. GDF-15: Diagnostic, prognostic, and therapeutic significance in glioblastoma multiforme. J Cell Physiol 2021; 236:5564-5581. [PMID: 33580506 DOI: 10.1002/jcp.30289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Glioblastoma multiforme (GBM) is the commonest primary malignant brain tumor and has a remarkably weak prognosis. According to the aggressive form of GBM, understanding the accurate molecular mechanism associated with GBM pathogenesis is essential. Growth differentiation factor 15 (GDF-15) belongs to transforming growth factor-β superfamily with important roles to control biological processes. It affects cancer growth and progression, drug resistance, and metastasis. It also can promote stemness in many cancers, and also can stress reactions control, bone generation, hematopoietic growth, adipose tissue performance, and body growth, and contributes to cardiovascular disorders. The role GDF-15 to develop and progress cancer is complicated and remains unclear. GDF-15 possesses tumor suppressor properties, as well as an oncogenic effect. GDF-15 antitumorigenic and protumorigenic impacts on tumor development are linked to the cancer type and stage. However, the GDF-15 signaling and mechanism have not yet been completely identified because of no recognized cognate receptor.
Collapse
Affiliation(s)
| | - Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Zand
- Department of Neurology, Geisinger Health System, Danville, Pennsylvania, USA
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Zarei
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Mao YK, Liu ZB, Cai L. Identification of glioblastoma-specific prognostic biomarkers via an integrative analysis of DNA methylation and gene expression. Oncol Lett 2020; 20:1619-1628. [PMID: 32724403 PMCID: PMC7377174 DOI: 10.3892/ol.2020.11729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/07/2020] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and lethal tumor of the central nervous system. The present study set out to identify reliable prognostic and predictive biomarkers for patients with GBM. RNA-sequencing data were obtained from The Cancer Genome Atlas database and DNA methylation data were downloaded using the University of California Santa Cruz-Xena database. The expression and methylation differences between patients with GBM, and survival times <1 and ≥1 year were investigated. A protein-protein interaction network was constructed and functional enrichment analyses of differentially expressed and methylated genes were performed. Hub genes were identified using the Cytoscape plug-in cytoHubba software. Survival analysis was performed using the survminer package, in order to determine the prognostic values of the hub genes. The present study identified 71 genes that were hypomethylated and expressed at high levels, and four genes that were hypermethylated and expressed at low levels in GBM. These genes were predominantly enriched in the ‘JAK-STAT signaling pathway’, ‘transcriptional misregulation in cancer’ and the ‘ECM-receptor interaction’, which are associated with GBM development. Among the 24 hub genes identified, 15 possessed potential prognostic value. An integrative analysis approach was implemented in order to analyze the association of DNA methylation with changes in gene expression and to assess the association of gene expression changes with GBM survival time. The results of the present study suggest that these 15 CpG-based genes may be useful and practical tools in predicting the prognosis of patients with GBM. However, future research on gene methylation and/or expression is required in order to develop personalized treatments for patients with GBM.
Collapse
Affiliation(s)
- Yu Kun Mao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhi Bo Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
5
|
Feng Y, Wan P, Yin L, Lou X. The Inhibition of MicroRNA-139-5p Promoted Osteoporosis of Bone Marrow-Derived Mesenchymal Stem Cells by Targeting Wnt/Beta-Catenin Signaling Pathway by NOTCH1. J Microbiol Biotechnol 2020; 30:448-458. [PMID: 31752063 PMCID: PMC9728286 DOI: 10.4014/jmb.1908.08036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigated the therapeutic effects of microRNA-139-5p in relation to osteoporosis of bone marrow-derived mesenchymal stem cell (BMSCs) and its underlying mechanisms. In this study we used a dexamethasone-induced in vivo model of osteoporosis and BMSCs were used for the in vitro model. Real-time quantitative polymerase chain reaction (RT-PCR) and gene chip were used to analyze the expression of microRNA-139-5p. In an osteoporosis rat model, the expression of microRNA-139-5p was increased, compared with normal group. Downregulation of microRNA-139-5p promotes cell proliferation and osteogenic differentiation in BMSCs. Especially, up-regulation of microRNA-139-5p reduced cell proliferation and osteogenic differentiation in BMSCs. Overexpression of miR-139-5p induced Wnt/β-catenin and down-regulated NOTCH1 signaling in BMSCs. Down-regulation of miR-139-5p suppressed Wnt/β-catenin and induced NOTCH1 signaling in BMSCs. The inhibition of NOTCH1 reduced the effects of anti-miR-139-5p on cell proliferation and osteogenic differentiation in BMSCs. Activation of Wnt/β-catenin also inhibited the effects of anti-miR-139-5p on cell proliferation and osteogenic differentiation in BMSCs. Taken together, our results suggested that the inhibition of microRNA-139-5p promotes osteogenic differentiation of BMSCs via targeting Wnt/β-catenin signaling pathway by NOTCH1.
Collapse
Affiliation(s)
- Yimiao Feng
- Department of Orthodontics, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 30009, P.R. China
| | - Pengbo Wan
- Shangqiu Medical College, Shangqiu, Henan Province 476100, P.R. China
| | - Linling Yin
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (originally named “Shanghai First People’s Hospital”) Shanghai 200080, P.R. China,Corresponding author Phone: +86-21-63240090 E-mail:
| | - Xintian Lou
- Department of Dentistry, Punan Hospital of Pudong New District, Shanghai 200125, P.R. China
| |
Collapse
|
6
|
Chang Y, Huang W, Sun Q, Li S, Yan Z, Wang Q, Liu X. MicroRNA‑634 alters nerve apoptosis via the PI3K/Akt pathway in cerebral infarction. Int J Mol Med 2018; 42:2145-2154. [PMID: 30015915 DOI: 10.3892/ijmm.2018.3777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/18/2018] [Indexed: 11/06/2022] Open
Abstract
In the present study, the role and mechanism of microRNA‑634 (miRNA‑634) in the adjustment of nerve inflammation and apoptosis in cerebral infarction were investigated. In a cerebral infarction rat model, the expression of miRNA‑634 was increased, compared with that in the normal control group. The upregulated expression of miRNA‑634 in an in vitro model of cerebral infarction increased cell apoptosis and the protein expression of capsase‑3/B‑cell lymphoma 2‑associated X protein (Bax) via inactivation of the phosphoinositide 3‑kinase (PI3K)/Akt pathway. The downregulation of miRNA‑634 enhanced cell growth and inhibited cell apoptosis in the in vitro model of cerebral infarction through induction of the PI3K/Akt pathway. Subsequently, a PI3K inhibitor was used to inhibit the expression of PI3K in the in vitro model of cerebral infarction via the downregulation of miRNA‑634, which showed that cell apoptosis and the protein expression of capsase‑3/Bax were also increased. A PI3K agonist reduced the effects of the upregulation of miRNA‑634 in the in vitro model of cerebral infarction. In conclusion, the data obtained demonstrated the possible future use of miRNA‑634 as a therapeutic target in cerebral infarction through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yajun Chang
- Department of Biochemistry and Molecular Biology, Tangshan Worker Hospital, Tangshan, Hebei 063000, P.R. China
| | - Wei Huang
- Department of Biochemistry and Molecular Biology, Tangshan Worker Hospital, Tangshan, Hebei 063000, P.R. China
| | - Qian Sun
- Department of Biochemistry and Molecular Biology, Tangshan Worker Hospital, Tangshan, Hebei 063000, P.R. China
| | - Suli Li
- Department of Biochemistry and Molecular Biology, Tangshan Worker Hospital, Tangshan, Hebei 063000, P.R. China
| | - Zhongkai Yan
- Department of Biochemistry and Molecular Biology, Tangshan Worker Hospital, Tangshan, Hebei 063000, P.R. China
| | - Qiumin Wang
- Department of Biochemistry and Molecular Biology, Tangshan Worker Hospital, Tangshan, Hebei 063000, P.R. China
| | - Xiumin Liu
- Department of Biochemistry and Molecular Biology, Tangshan Worker Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
7
|
Chen P, Zhao L, Pan X, Jin L, Lin C, Xu W, Xu J, Guan X, Wu X, Wang Y, Yang S, Wang T, Lai Y. Tumor suppressor microRNA-136-5p regulates the cellular function of renal cell carcinoma. Oncol Lett 2018; 15:5995-6002. [PMID: 29556316 PMCID: PMC5844007 DOI: 10.3892/ol.2018.8081] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 12/11/2017] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRs) are involved in diverse physiological and developmental processes at the post-transcriptional level in cells. Previous studies have demonstrated that miR-136-5p is involved in certain types of cancer. However, the function of miR-136-5p in renal cell carcinoma (RCC) remains to be fully elucidated. In present study, miR-136-5p expression levels were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and MTT assays, CCK-8 assays, Transwell assays, wound healing assays and flow cytometry were performed to investigate the function of miR-136-5p in RCC. RT-qPCR revealed that the expression of miR-136 was significantly lower in RCC tissues and cells compared with adjacent non-tumor tissues and cells in vitro. miR-136-5pwas also demonstrated to be associated with RCC cell proliferation, viability, migration, invasion and apoptosis. miR-136-5p may therefore function as a tumor suppressor in RCC. Further studies are required to elucidate the molecular mechanisms and signaling pathways underlying these functions of miR-136-5p, to investigate the potential function of miR-136-5p as a biomarker for the early detection and prognosis of RCC, and its potential as a therapeutic target for the treatment of RCC.
Collapse
Affiliation(s)
- Peijie Chen
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Liwen Zhao
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Xiang Pan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Lu Jin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Canbin Lin
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Department of Urology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
| | - Weijie Xu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Jinling Xu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xin Guan
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Xueling Wu
- Department of Urology, Longgang District Central Hospital of Shenzhen, Shenzhen, Guangdong 518116, P.R. China
| | - Yong Wang
- Department of Reproduction, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Shangqi Yang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Tao Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- Professor Tao Wang, Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| | - Yongqing Lai
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
- The Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Institute of Urology of Shenzhen PKU-HKUST Medical Center, Shenzhen, Guangdong 518036, P.R. China
- Correspondence to: Professor Yongqing Lai, Department of Urology, Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, Guangdong 518036, P.R. China, E-mail:
| |
Collapse
|
8
|
Tan Z, Zhao J, Jiang Y. MiR-634 sensitizes glioma cells to temozolomide by targeting CYR61 through Raf-ERK signaling pathway. Cancer Med 2018; 7:913-921. [PMID: 29473317 PMCID: PMC5852346 DOI: 10.1002/cam4.1351] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/19/2017] [Accepted: 12/30/2017] [Indexed: 12/11/2022] Open
Abstract
Glioma is the most common intracranial malignant tumors, accounting for about 40% of intracranial tumors. Primary or secondary drug resistance is one of the main reasons for the failure of treatment. The oncogenic or tumor-suppressive roles of miR-634 have been revealed in different types of cancer. However, the role of miR-634 in glioma remains unknown and whether miR-634 could sensitize glioma cells to temozolomide also is unclear. Here, we aim to investigate the biological function of miR-634 and the possible mechanisms in glioma. In this study, we found that miR-634 was downregulated in glioma tissues compared with normal brain tissues, and its expression was associated with tumor size and WHO grade. Importantly, glioma patients with low miR-634 expression showed a shorter survival time than patients which had high expression of miR-634. This study also showed that miR-634 was decreased in temozolomide-resistant glioma cells, and restoration of miR-634 could sensitize the resistant cells to temozolomide by targeting CYR61 through Raf-ERK signaling. Our study provides a potential target for overcome drug resistance in glioma.
Collapse
Affiliation(s)
- Zhigang Tan
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jizong Zhao
- Department of Neurosurgery, Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| |
Collapse
|
9
|
Zhao H, Yuan H, Hu J, Xu C, Liao G, Yin W, Xu L, Wang L, Zhang X, Shi A, Li J, Xiao Y. Optimizing prognosis-related key miRNA-target interactions responsible for cancer metastasis. Oncotarget 2017; 8:109522-109535. [PMID: 29312626 PMCID: PMC5752539 DOI: 10.18632/oncotarget.22724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence suggests that the abnormality of microRNAs (miRNAs) and their downstream targets is frequently implicated in the pathogenesis of human cancers, however, the clinical benefit of causal miRNA-target interactions has been seldom studied. Here, we proposed a computational method to optimize prognosis-related key miRNA-target interactions by combining transcriptome and clinical data from thousands of TCGA tumors across 16 cancer types. We obtained a total of 1,956 prognosis-related key miRNA-target interactions between 112 miRNAs and 1,443 their targets. Interestingly, these key target genes are specifically involved in tumor progression-related functions, such as ‘cell adhesion’ and ‘cell migration’. Furthermore, they are most significantly correlated with ‘tissue invasion and metastasis’, a hallmark of metastasis, in ten distinct types of cancer through the hallmark analysis. These results implicated that the prognosis-related key miRNA-target interactions were highly associated with cancer metastasis. Finally, we observed that the combination of these key miRNA-target interactions allowed to distinguish patients with good prognosis from those with poor prognosis both in most TCGA cancer types and independent validation sets, highlighting their roles in cancer metastasis. We provided a user-friendly database named miRNATarget (freely available at http://biocc.hrbmu.edu.cn/miRNATar/), which provides an overview of the prognosis-related key miRNA-target interactions across 16 cancer types.
Collapse
Affiliation(s)
- Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Huating Yuan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jing Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Gaoming Liao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Wenkang Yin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Liwen Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Li Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Xinxin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Aiai Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jing Li
- Department of Ultrasonic Medicine, The 1st Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
10
|
MicroRNA profiling study reveals miR-150 in association with metastasis in nasopharyngeal carcinoma. Sci Rep 2017; 7:12012. [PMID: 28931826 PMCID: PMC5607379 DOI: 10.1038/s41598-017-10695-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in pathogenesis of human cancers. Several miRNAs have been shown to involve in nasopharyngeal carcinoma (NPC) pathogenesis through alteration of gene networks. A global view of the miRNA expression profile of clinical specimens would be the best way to screen out the possible miRNA candidates that may be involved in disease pathogenesis. In this study, we investigated the expression profiles of miRNA in formalin-fixed paraffin-embedded tissues from patients with undifferentiated NPC versus non-NPC controls using a miRNA real-time PCR platform, which covered a total of 95 cancer-related miRNAs. Hierarchical cluster analysis revealed that NPC and non-NPC controls were clearly segregated. Promisingly, 10 miRNA candidates were differentially expressed. Among them, 9 miRNAs were significantly up-regulated of which miR-205 and miR-196a showed the most up-regulated in NPC with the highest incidence percentage of 94.1% and 88.2%, respectively, while the unique down-regulated miR-150 was further validated in patient sera. Finally, the in vitro gain-of-function and loss-of-function assays revealed that miR-150 can modulate the epithelial-mesenchymal-transition property in NPC/HK-1 cells and led to the cell motility and invasion. miR-150 may be a potential biomarker for NPC and plays a critical role in NPC tumourigenesis.
Collapse
|
11
|
Wang R, Wei B, Wei J, Tian Y, Du C. Cysteine-rich 61-associated gene expression profile alterations in human glioma cells. Mol Med Rep 2017; 16:5561-5567. [PMID: 28849002 DOI: 10.3892/mmr.2017.7216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/20/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate gene expression profile alterations associated with cysteine‑rich 61 (CYR61) expression in human glioma cells. The GSE29384 dataset, downloaded from the Gene Expression Omnibus, includes three LN229 human glioma cell samples expressing CYR61 induced by doxycycline (Dox group), and three control samples not exposed to doxycycline (Nodox group). Differentially expressed genes (DEGs) between the Dox and Nodox groups were identified with cutoffs of |log2 fold change (FC)|>0.5 and P<0.05. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses for DEGs were performed. Protein‑protein interaction (PPI) network and module analyses were performed to identify the most important genes. Transcription factors (TFs) were obtained by detecting the TF binding sites of DEGs using a Whole Genome rVISTA online tool. A total of 258 DEGs, including 230 (89%) upregulated and 28 (11%) downregulated DEGs were identified in glioma cells expressing CYR61 compared to cells without CYR61 expression. The majority of upregulated DEGs, including interferon (IFN)B1, interferon‑induced (IFI)44 and interferon regulatory factor (IRF)7, were associated with immune, defense and virus responses, and cytokine‑cytokine receptor interaction signaling pathways. Signal transducer and activator of transcription 1 (STAT1) and DEAD‑box helicase 58 (DDX58) were observed to have high connection degrees in the PPI network. A total of seven TFs of the DEGs, including interferon consensus sequence‑binding protein and IFN‑stimulated gene factor‑3 were additionally detected. In conclusion, IFNB1, genes encoding IFN‑induced proteins (IFI16, IFI27, IFI44 and IFITM1), IRFs (IRF1, IRF7 and IRF9), STAT1 and DDX58 were demonstrated to be associated with CYR61 expression in glioma cells; thus, they may be critical for maintaining the role of CYR61 during cancer progression.
Collapse
Affiliation(s)
- Rui Wang
- Department of Radiology, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bo Wei
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jun Wei
- Department of Science and Education Section, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yu Tian
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Chao Du
- Department of Neurosurgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
12
|
Chen D, Liu L, Luo X, Mu A, Yan L, Chen X, Wang L, Wang N, He H, Zhou H, Zhang T. Effect of SMYD3 on the microRNA expression profile of MCF-7 breast cancer cells. Oncol Lett 2017; 14:1831-1840. [PMID: 28789418 DOI: 10.3892/ol.2017.6320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/28/2017] [Indexed: 01/02/2023] Open
Abstract
SET and MYND domain containing 3 (SMYD3) is a histone methyltransferase (HMT) and transcription factor, which serves important roles in carcinogenesis. Numerous downstream target genes of SMYD3 have been identified in previous studies. However, the downstream microRNA (miRNA) s regulated by SMYD3 are yet to be elucidated. In the present study, the results of miRNA microarray demonstrated that 30 miRNA expression profiles were upregulated, whilst 24 miRNAs were downregulated by >2.0-fold in the SMYD3-overexpressed MCF-7 breast cancer cells. The HMT activity was demonstrated to be essential for SMYD3-mediated transactivation of miR-200c-3p and the overexpression of miR-200c-3p inhibited the transactivation effects of SMYD3 on myocardin-related transcription factor-A-dependent migration-associated genes. To our best knowledge, the current study is the first to report on the transcriptional regulation of SMYD3 on miRNAs, and miR-200c may be a downstream negative regulator of the SMYD3-mediated pathway in the migration of breast cancer cells. These results may provide a novel theoretical basis to understand the mechanisms underlying the initiation, progression, diagnosis, prevention and therapy of breast cancer.
Collapse
Affiliation(s)
- Dongju Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Lei Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Ai Mu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Lihua Yan
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Xiaoying Chen
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Lei Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Nan Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Hongpeng He
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Hao Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Tongcun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, P.R. China.,Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| |
Collapse
|
13
|
Paraboschi EM, Cardamone G, Rimoldi V, Duga S, Soldà G, Asselta R. miR-634 is a Pol III-dependent intronic microRNA regulating alternative-polyadenylated isoforms of its host gene PRKCA. Biochim Biophys Acta Gen Subj 2017; 1861:1046-1056. [PMID: 28212793 DOI: 10.1016/j.bbagen.2017.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 02/02/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND The protein kinase C alpha (PRKCA) gene, coding for a Th17-cell-selective kinase, shows a complex splicing pattern, with at least 2 stable alternative transcripts characterized by an alternative upstream polyadenylation site. Polymorphisms in this gene were associated with several conditions, including multiple sclerosis, asthma, schizophrenia, and cancer. The presence of a microRNA (miRNA), i.e. miR-634, within intron 15 of the PRKCA gene, suggests the intriguing possibility that this miRNA might play a role in the susceptibility to these pathologies. METHODS Here, we characterized miR-634 expression profile and searched for its putative targets using a combination of RT-PCR and gene reporter assays. RESULTS The quantitative analysis of PRKCA and miR-634 transcripts in a panel of human tissues and cell lines revealed discordant expression profiles, suggesting the presence of an independent miR-634 promoter and/or a possible direct role of miR-634 in modulating PRKCA expression. Functional studies demonstrated the existence of a miRNA-specific promoter, which was shown to be Pol-III-dependent. Furthermore, transfection experiments showed that miR-634 is able to target its host gene by specifically down-regulating the shorter alternative-polyadenylated isoforms. CONCLUSIONS MiR-634 is a Pol III-dependent intronic miRNA, which could target its host gene through a "first-order" negative feedback. GENERAL SIGNIFICANCE MiR-634 is one of the few characterized examples of Pol-III-dependent intronic miRNAs. Its independent transcription from the host gene suggests caution in using expression profiles of host genes as proxies for the expression of the corresponding intronic miRNAs.
Collapse
Affiliation(s)
- Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, 20089, Rozzano, Milan, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
14
|
Saadatpour L, Fadaee E, Fadaei S, Nassiri Mansour R, Mohammadi M, Mousavi SM, Goodarzi M, Verdi J, Mirzaei H. Glioblastoma: exosome and microRNA as novel diagnosis biomarkers. Cancer Gene Ther 2016; 23:415-418. [PMID: 27834360 DOI: 10.1038/cgt.2016.48] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is known as a tumor type, which arises from astrocytes. Several studies indicated that GBM tumor cells are malignant. This is because of the fact that they consist of different cell types, which are reproducing very quickly and are also supported by a large network of blood vessels. The correct identification of various stages of GBM could help to better treat the patients with this disease. Therefore, new biomarkers such as exosomes and microRNAs (miRNAs) may help us to learn more about GBM and they may also lead to a more effective treatment for patients with GBM. Exosomes have emerged as biological vehicles, which can perform various tasks in carcinogenesis pathways such as PI3K/AKT, SOX2, PTEN, ERK, and STAT3. The miRNAs are known as small noncoding RNAs that are involved in several GBM pathogenic events. These molecules have key roles in various biological processes such as angiogenesis, metastasis and tumor growth. In this study, we highlighted various exosomes and miRNAs that could be used for diagnosis and/or prognosis biomarkers in patients with GBM.
Collapse
Affiliation(s)
- L Saadatpour
- Medical Students Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - E Fadaee
- Faculty of Medicine, Islamic Azad University of Najafabad, Najafabad, Iran
| | - S Fadaei
- Student Research Committee, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - R Nassiri Mansour
- Department of Clinical Biochemistry, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - M Mohammadi
- Hepatitis Research Center and Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - S M Mousavi
- Department of Neuroscience, School of Advanced Technologies in Medicine,Tehran University of Medical Sciences, Tehran, Iran
| | - M Goodarzi
- Department of Biosystems, Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
| | - J Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Applied Cell Sciences, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - H Mirzaei
- Department of Applied Cell Sciences, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Zhang CZ, Cao Y, Fu J, Yun JP, Zhang MF. miR-634 exhibits anti-tumor activities toward hepatocellular carcinoma via Rab1A and DHX33. Mol Oncol 2016; 10:1532-1541. [PMID: 27693040 DOI: 10.1016/j.molonc.2016.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/09/2016] [Accepted: 09/09/2016] [Indexed: 01/13/2023] Open
Abstract
Deregulation of microRNAs contributes to the aberrant growth of hepatocellular carcinoma (HCC). Here, we showed that miR-634 expression was frequently decreased in HCC. Low miR-634 expression was significantly associated with larger tumor size, poorer tumor differentiation, advanced TNM stage, vascular invasion, absence of tumor capsule and unfavorable overall survival. Overexpression of miR-634 markedly attenuated cell viability, colony formation, tumor growth and metastasis, whereas miR-634 inhibition resulted in the opposite phenotypes. Furthermore, re-introduction of miR-634 induced cell apoptosis in vitro and in vivo. Mechanistically, miR-634 inhibited the expression of Rab1A and DHX33 via directly binding to the 3'-UTR of both genes. In clinical samples, the expression of Rab1A or DHX33 was reversely correlated with miR-634. Re-expression of Rab1A or DHX33 abrogated the miR-634-mediated inhibition of cell proliferation and migration. Collectively, our data suggest a tumor suppressor role of miR-634 in HCC. The newly identified miR-634/Rab1A or miR-634/DHX33 axis serves as a potential therapeutic target for the clinical management.
Collapse
Affiliation(s)
- Chris Zhiyi Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yun Cao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jia Fu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jing-Ping Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Mei-Fang Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
16
|
Analysis of chromosome 17 miRNAs and their importance in medulloblastomas. BIOMED RESEARCH INTERNATIONAL 2015; 2015:717509. [PMID: 25866804 PMCID: PMC4383152 DOI: 10.1155/2015/717509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/16/2014] [Accepted: 11/16/2014] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small sequences of nucleotides that regulate posttranscriptionally gene expression. In recent years they have been recognized as very important general regulators of proliferation, differentiation, adhesion, cell death, and others. In some cases, the characteristic presence of miRNAs reflects some of the cellular pathways that may be altered. Particularly medulloblastomas (MB) represent entities that undergo almost characteristic alterations of chromosome 17: from loss of discrete fragments and isochromosomes formation to complete loss of one of them. An analysis of the major loci on this chromosome revealed that it contains at least 19 genes encoding miRNAs which may regulate the development and differentiation of the brain and cerebellum. miRNAs are regulators of real complex networks; they can regulate from 100 to over 300 messengers of various proteins. In this review some miRNAs are considered to be important in MB studies. Some of them are miRNA-5047, miRNA-1253, miRNA-2909, and miRNA-634. Everyone can significantly affect the development, growth, and cell invasion of MB, and they have not been explored in this tumor. In this review, we propose some miRNAs that can affect some genes in MB, and hence the importance of its study.
Collapse
|
17
|
Jeansonne D, DeLuca M, Marrero L, Lassak A, Pacifici M, Wyczechowska D, Wilk A, Reiss K, Peruzzi F. Anti-tumoral effects of miR-3189-3p in glioblastoma. J Biol Chem 2015; 290:8067-80. [PMID: 25645911 DOI: 10.1074/jbc.m114.633081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Glioblastoma is one of the most aggressive brain tumors. We have previously found up-regulation of growth differentiation factor 15 (GDF15) in glioblastoma cells treated with the anticancer agent fenofibrate. Sequence analysis of GDF15 revealed the presence of a microRNA, miR-3189, in the single intron. We then asked whether miR-3189 was expressed in clinical samples and whether it was functional in glioblastoma cells. We found that expression of miR-3189-3p was down-regulated in astrocytoma and glioblastoma clinical samples compared with control brain tissue. In vitro, the functionality of miR-3189-3p was tested by RNA-binding protein immunoprecipitation, and miR-3189-3p coimmunoprecipitated with Argonaute 2 together with two of its major predicted gene targets, the SF3B2 splicing factor and the guanine nucleotide exchange factor p63RhoGEF. Overexpression of miR-3189-3p resulted in a significant inhibition of cell proliferation and migration through direct targeting of SF3B2 and p63RhoGEF, respectively. Interestingly, miR-3189-3p levels were increased by treatment of glioblastoma cells with fenofibrate, a lipid-lowering drug with multiple anticancer activities. The attenuated expression of miR-3189-3p in clinical samples paralleled the elevated expression of SF3B2, which could contribute to the activation of SF3B2 growth-promoting pathways in these tumors. Finally, miR-3189-3p-mediated inhibition of tumor growth in vivo further supported the function of this microRNA as a tumor suppressor.
Collapse
Affiliation(s)
- Duane Jeansonne
- From the Department of Medicine and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Mariacristina DeLuca
- From the Department of Medicine and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | | | - Adam Lassak
- From the Department of Medicine and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Marco Pacifici
- From the Department of Medicine and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Dorota Wyczechowska
- From the Department of Medicine and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Anna Wilk
- From the Department of Medicine and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Krzysztof Reiss
- From the Department of Medicine and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Francesca Peruzzi
- From the Department of Medicine and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
18
|
Martin EC, Krebs AE, Burks HE, Elliott S, Baddoo M, Collins-Burow BM, Flemington EK, Burow ME. miR-155 induced transcriptome changes in the MCF-7 breast cancer cell line leads to enhanced mitogen activated protein kinase signaling. Genes Cancer 2014; 5:353-64. [PMID: 25352952 PMCID: PMC4209600 DOI: 10.18632/genesandcancer.33] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/01/2014] [Indexed: 11/25/2022] Open
Abstract
A single microRNA (miRNA) has the potential to regulate thousands of genes and thus govern multiple signaling pathways at once. miR-155 is an oncogenic miRNA which regulates many cellular pathways, designating it as a multifaceted regulator of proliferation, chemo-resistance, and apoptosis. While many singular targeted effects of miR-155 have been defined and an oncogenic role has been attributed to miR-155 expression, the global effect of miR-155 on the cellular transcriptomes of an ER+ breast cancer cell line has yet to be determined. Here we demonstrate that miR-155 expression increases tumorigenesis in vivo and we determine miR-155 mediated transcriptome changes through next generation sequencing analysis. miR-155 expression alters many signaling pathways, with the chief altered pathway being the MAPK signaling cascade and miR-155 induces shortening of target mRNA 3′UTRs and alternative isoform expression of MAPK related genes. In addition there is an observed increase in protein phosphorylation of components of MAPK signaling including ERK1/2 and AP-1 complex members (Fra-1 and c-Fos) as well as elevated gene expression of MAPK regulated genes Zeb1, Snail, Plaur, and SerpinE1.
Collapse
Affiliation(s)
- Elizabeth C Martin
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA
| | - Adrienne E Krebs
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA
| | - Hope E Burks
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA
| | - Steven Elliott
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA
| | - Melody Baddoo
- Tulane Cancer Center, Tulane University, New Orleans, LA ; Department of Pathology, Tulane University, New Orleans, LA
| | - Bridgette M Collins-Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA
| | - Erik K Flemington
- Tulane Cancer Center, Tulane University, New Orleans, LA ; Department of Pathology, Tulane University, New Orleans, LA
| | - Matthew E Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA ; Tulane Cancer Center, Tulane University, New Orleans, LA ; Department of Pharmacology, Tulane University, New Orleans, LA
| |
Collapse
|
19
|
Peng X, Cao P, He D, Han S, Zhou J, Tan G, Li W, Yu F, Yu J, Li Z, Cao K. MiR-634 sensitizes nasopharyngeal carcinoma cells to paclitaxel and inhibits cell growth both in vitro and in vivo. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:6784-6791. [PMID: 25400759 PMCID: PMC4230079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/10/2014] [Indexed: 06/04/2023]
Abstract
Resistance to chemotherapy is one of the key causal factors in cancer death and increasing evidence has revealed that microRNAs (miRNAs) are involved in chemoresistance in many kinds of human cancers. Paclitaxel has been used for treatment of advanced nasopharyngeal carcinoma (NPC); however, treatment failure often occurs due to development of acquired paclitaxel resistance. In this study, based on miRNA microarray screening and qRT-PCR validation, we found six differentially expressed miRNAs in our induced paclitaxel-resistant NPC CNE-1/Taxol cells. Furthermore, we clarified the role of miR-634, most significantly downregulated in the paclitaxel-resistant CNE-1/Taxol, in regulating the paclitaxel sensitivity in NPC cells. We restored miR-634 expression in the CNE-1/Taxol cells by lentivirus infection, and found restoration of miR-634 re-sensitized the CNE-1/Taxol cells to paclitaxel in vitro by MTT assay and colony formation assay. In xenograft mouse model, we found that miR-634 inhibited tumor growth and enhanced paclitaxel sensitivity. Thus, our findings provide important information for the development of targeted gene therapy for reversing paclitaxel resistance in NPC.
Collapse
Affiliation(s)
- Xiaowei Peng
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya Medical School, Central South UniversityChangsha 410013, Hunan, China
| | - Peiguo Cao
- Department of Oncology, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Dong He
- Department of Respiratory, The Second People’s Hospital of Hunan ProvinceChangsha 410013, Hunan, China
| | - Shuang Han
- Department of Oncology, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Guolin Tan
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Wei Li
- Department of Otolaryngology-Head and Neck Surgery, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| | - Fenghui Yu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya Medical School, Central South UniversityChangsha 410013, Hunan, China
| | - Jianjun Yu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya Medical School, Central South UniversityChangsha 410013, Hunan, China
| | - Zan Li
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya Medical School, Central South UniversityChangsha 410013, Hunan, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital, Central South UniversityChangsha 410013, Hunan, China
| |
Collapse
|