1
|
A Conserved Histone H3-H4 Interface Regulates DNA Damage Tolerance and Homologous Recombination during the Recovery from Replication Stress. Mol Cell Biol 2021; 41:MCB.00044-20. [PMID: 33526454 DOI: 10.1128/mcb.00044-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 01/24/2021] [Indexed: 12/20/2022] Open
Abstract
In eukaryotes, genomic DNA is packaged into nucleosomes, which are the basal components coordinating both the structures and functions of chromatin. In this study, we screened a collection of mutations for histone H3/H4 mutants in Saccharomyces cerevisiae that affect the DNA damage sensitivity of DNA damage tolerance (DDT)-deficient cells. We identified a class of histone H3/H4 mutations that suppress methyl methanesulfonate (MMS) sensitivity of DDT-deficient cells (referred to here as the histone SDD mutations), which likely cluster on a specific H3-H4 interface of the nucleosomes. The histone SDD mutations did not suppress the MMS sensitivity of DDT-deficient cells in the absence of Rad51, indicating that homologous recombination (HR) is responsible for DNA damage resistance. Furthermore, the histone SDD mutants showed reduced levels of PCNA ubiquitination after exposure to MMS or UV irradiation, consistent with decreased MMS-induced mutagenesis relative to that of wild-type cells. We also found that histone SDD mutants lacking the INO80 chromatin remodeler impair HR-dependent recovery from MMS-induced replication arrest, resulting in defective S-phase progression and increased Rad52 foci. Taken together, our data provide novel insights into nucleosome functions, which link INO80-dependent chromatin remodeling to the regulation of DDT and HR during the recovery from replication blockage.
Collapse
|
2
|
Glineburg MR, Johns E, Johnson FB. Deletion of ULS1 confers damage tolerance in sgs1 mutants through a Top3-dependent D-loop mediated fork restart pathway. DNA Repair (Amst) 2019; 78:102-113. [PMID: 31005681 DOI: 10.1016/j.dnarep.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR)-based repair during DNA replication can apparently utilize several partially overlapping repair pathways in response to any given lesion. A key player in HR repair is the Sgs1-Top3-Rmi1 (STR) complex, which is critical for resolving X-shaped recombination intermediates formed following bypass of methyl methanesulfonate (MMS)-induced damage. STR mutants are also sensitive to the ribonucleotide reductase inhibitor, hydroxyurea (HU), but unlike MMS treatment, HU treatment is not accompanied by X-structure accumulation, and it is thus unclear how STR functions in this context. Here we provide evidence that HU-induced fork stalling enlists Top3 prior to recombination intermediate formation. The resistance of sgs1Δ mutants to HU is enhanced by the absence of the putative SUMO (Small Ubiquitin MOdifier)-targeted ubiquitin ligase, Uls1, and we demonstrate that Top3 is required for this enhanced resistance and for coordinated breaks and subsequent d-loop formation at forks stalled at the ribosomal DNA (rDNA) replication fork block (RFB). We also find that HU resistance depends on the catalytic activity of the E3 SUMO ligase, Mms21, and includes a rapid Rad51-dependent restart mechanism that is different from the slow Rad51-independent HR fork restart mechanism operative in sgs1Δ ULS1+ mutants. These data support a model in which repair of HU-induced damage in sgs1Δ mutants involves an error-prone break-induced replication pathway but, in the absence of Uls1, shifts to one that is higher-fidelity and involves the formation of Rad51-dependent d-loops.
Collapse
Affiliation(s)
- M Rebecca Glineburg
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, 19104, United States; Cell and Molecular Biology Group, Biomedical Graduate Studies, Philadelphia, Pennsylvania, 19104, United States
| | - Eleanor Johns
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, 19104, United States
| | - F Brad Johnson
- Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, 19104, United States; Cell and Molecular Biology Group, Biomedical Graduate Studies, Philadelphia, Pennsylvania, 19104, United States; The Institute of Aging, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, United States.
| |
Collapse
|
3
|
Palecek JJ. SMC5/6: Multifunctional Player in Replication. Genes (Basel) 2018; 10:genes10010007. [PMID: 30583551 PMCID: PMC6356406 DOI: 10.3390/genes10010007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
The genome replication process is challenged at many levels. Replication must proceed through different problematic sites and obstacles, some of which can pause or even reverse the replication fork (RF). In addition, replication of DNA within chromosomes must deal with their topological constraints and spatial organization. One of the most important factors organizing DNA into higher-order structures are Structural Maintenance of Chromosome (SMC) complexes. In prokaryotes, SMC complexes ensure proper chromosomal partitioning during replication. In eukaryotes, cohesin and SMC5/6 complexes assist in replication. Interestingly, the SMC5/6 complexes seem to be involved in replication in many ways. They stabilize stalled RFs, restrain RF regression, participate in the restart of collapsed RFs, and buffer topological constraints during RF progression. In this (mini) review, I present an overview of these replication-related functions of SMC5/6.
Collapse
Affiliation(s)
- Jan J Palecek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic.
| |
Collapse
|
4
|
Hayashi M, Keyamura K, Hishida T. Cyclin-dependent kinase modulates budding yeast Rad5 stability during cell cycle. PLoS One 2018; 13:e0204680. [PMID: 30256854 PMCID: PMC6157869 DOI: 10.1371/journal.pone.0204680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
The DNA damage tolerance (DDT) pathway facilitates the bypass of the fork-blocking lesions without removing them through either translesion DNA synthesis or error-free damage bypass mechanism. The Saccharomyces cerevisiae Rad5 is a multi-functional protein involved in the error-free branch of the DDT pathway, and its protein level periodically fluctuates through the cell cycle; however, the mechanistic basis and functional importance of the Rad5 level for the cell cycle regulation remain unclear. Here, we show that Rad5 is predominantly phosphorylated on serine 130 (S130) during S/G2 phase and that this modification depends on the cyclin-dependent kinase Cdc28/CDK1. We also show that the phosphorylated Rad5 species at S130 exhibit a relatively short half-life compared with non-phosphorylated Rad5 moiety, and that the Rad5 protein is partially stabilized in phosphorylation-defective rad5 S130A cells. Importantly, the elimination of this modification results in a defective cell-cycle dependent Rad5 oscillation pattern. Together, our results demonstrate that CDK1 modulates Rad5 stability by phosphorylation during the cell cycle, suggesting a crosstalk between the phosphorylation and degradation of Rad5.
Collapse
Affiliation(s)
- Masafumi Hayashi
- Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Kenji Keyamura
- Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
| | - Takashi Hishida
- Department of Life Science, Graduate School of Science, Gakushuin University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
5
|
Abstract
One major challenge during genome duplication is the stalling of DNA replication forks by various forms of template blockages. As these barriers can lead to incomplete replication, multiple mechanisms have to act concertedly to correct and rescue stalled replication forks. Among these mechanisms, replication fork regression entails simultaneous annealing of nascent and template strands, which leads to regression of replication forks and formation of four-way DNA junctions. In principle, this process can lead to either positive outcomes, such as DNA repair and replication resumption, or less desirable outcomes, such as misalignment between nascent and template DNA and DNA cleavage. While our understanding of replication fork regression and its various possible outcomes is still at an early stage, recent studies using combinational approaches in multiple organisms have begun to identify the enzymes that catalyze this DNA transaction and how these enzymes are regulated, as well as the specific manners by which fork regression can influence replication. This review summarizes these recent progresses. In keeping with the theme of this series of reviews, we focus on studies in yeast and compare to findings in higher eukaryotes. It is anticipated that these findings will form the basis for future endeavors to further elucidate replication fork remodeling and its implications for genome maintenance.
Collapse
|
6
|
Bae NS, Seberg AP, Carroll LP, Swanson MJ. Identification of Genes in Saccharomyces cerevisiae that Are Haploinsufficient for Overcoming Amino Acid Starvation. G3 (BETHESDA, MD.) 2017; 7:1061-1084. [PMID: 28209762 PMCID: PMC5386856 DOI: 10.1534/g3.116.037416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/11/2017] [Indexed: 12/17/2022]
Abstract
The yeast Saccharomyces cerevisiae responds to amino acid deprivation by activating a pathway conserved in eukaryotes to overcome the starvation stress. We have screened the entire yeast heterozygous deletion collection to identify strains haploinsufficient for growth in the presence of sulfometuron methyl, which causes starvation for isoleucine and valine. We have discovered that cells devoid of MET15 are sensitive to sulfometuron methyl, and loss of heterozygosity at the MET15 locus can complicate screening the heterozygous deletion collection. We identified 138 cases of loss of heterozygosity in this screen. After eliminating the issues of the MET15 loss of heterozygosity, strains isolated from the collection were retested on sulfometuron methyl. To determine the general effect of the mutations for a starvation response, SMM-sensitive strains were tested for the ability to grow in the presence of canavanine, which induces arginine starvation, and strains that were MET15 were also tested for growth in the presence of ethionine, which causes methionine starvation. Many of the genes identified in our study were not previously identified as starvation-responsive genes, including a number of essential genes that are not easily screened in a systematic way. The genes identified span a broad range of biological functions, including many involved in some level of gene expression. Several unnamed proteins have also been identified, giving a clue as to possible functions of the encoded proteins.
Collapse
Affiliation(s)
- Nancy S Bae
- Department of Biochemistry, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308
| | - Andrew P Seberg
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295
| | - Leslie P Carroll
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207
| | - Mark J Swanson
- Department of Biochemistry, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, Georgia 31207
| |
Collapse
|
7
|
Personalised Medicine: Genome Maintenance Lessons Learned from Studies in Yeast as a Model Organism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:157-178. [PMID: 28840557 DOI: 10.1007/978-3-319-60733-7_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Yeast research has been tremendously contributing to the understanding of a variety of molecular pathways due to the ease of its genetic manipulation, fast doubling time as well as being cost-effective. The understanding of these pathways did not only help scientists learn more about the cellular functions but also assisted in deciphering the genetic and cellular defects behind multiple diseases. Hence, yeast research not only opened the doors for transforming basic research into applied research, but also paved the roads for improving diagnosis and innovating personalized therapy of different diseases. In this chapter, we discuss how yeast research has contributed to understanding major genome maintenance pathways such as the S-phase checkpoint activation pathways, repair via homologous recombination and non-homologous end joining as well as topoisomerases-induced protein linked DNA breaks repair. Defects in these pathways lead to neurodegenerative diseases and cancer. Thus, the understanding of the exact genetic defects underlying these diseases allowed the development of personalized medicine, improving the diagnosis and treatment and overcoming the detriments of current conventional therapies such as the side effects, toxicity as well as drug resistance.
Collapse
|