1
|
Bowman KER, Ahne L, O'Brien L, Vander Mause ER, Lu P, Wallis B, Evason KJ, Lim CS. p53-Bad* Fusion Gene Therapy Induces Apoptosis In Vitro and Reduces Zebrafish Tumor Burden in Hepatocellular Carcinoma. Mol Pharm 2023; 20:331-340. [PMID: 36490361 PMCID: PMC10760808 DOI: 10.1021/acs.molpharmaceut.2c00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With few curative treatments and a global yearly death rate of over 800,000, hepatocellular carcinoma (HCC) desperately needs new therapies. Although wild-type p53 gene therapy has been shown to be safe in HCC patients, it has not shown enough efficacy to merit approval. This work aims to show how p53 can be re-engineered through fusion to the pro-apoptotic BH3 protein Bcl-2 antagonist of cell death (Bad) to improve anti-HCC activity and potentially lead to a novel HCC therapeutic, p53-Bad*. p53-Bad* is a fusion of p53 and Bad, with two mutations, S112A and S136A. We determined mitochondrial localization of p53-Bad* in liver cancer cell lines with varying p53 mutation statuses via fluorescence microscopy. We defined the apoptotic activity of p53-Bad* in four liver cancer cell lines using flow cytometry. To determine the effects of p53-Bad* in vivo, we generated and analyzed transgenic zebrafish expressing hepatocyte-specific p53-Bad*. p53-Bad* localized to the mitochondria regardless of the p53 mutation status and demonstrated superior apoptotic activity over WT p53 in early, middle, and late apoptosis assays. Tumor burden in zebrafish HCC was reduced by p53-Bad* as measured by the liver-to-body mass ratio and histopathology. p53-Bad* induced significant apoptosis in zebrafish HCC as measured by TUNEL staining but did not induce apoptosis in non-HCC fish. p53-Bad* can induce apoptosis in a panel of liver cancer cell lines with varying p53 mutation statuses and induce apoptosis/reduce HCC tumor burden in vivo in zebrafish. p53-Bad* warrants further investigation as a potential new HCC therapeutic.
Collapse
Affiliation(s)
- Katherine E Redd Bowman
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
| | - Lisa Ahne
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Institute of Pharmacy, Experimental Pharmacology for Natural Sciences, Martin Luther University, Halle-Wittenberg, Halle (Saale) 06120, Germany
| | - Liam O'Brien
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, United States
| | - Erica R Vander Mause
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
| | - Phong Lu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
| | - Bryce Wallis
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kimberley J Evason
- Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, United States
| | - Carol S Lim
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Afshari K, Sohal KS. Potential Alternative Therapeutic Modalities for Management Head and Neck Squamous Cell Carcinoma: A Review. Cancer Control 2023; 30:10732748231185003. [PMID: 37328298 DOI: 10.1177/10732748231185003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) includes malignancies of the lip and oral cavity, oropharynx, nasopharynx, larynx, and hypopharynx. It is among the most common malignancy worldwide, affecting nearly 1 million people annually. The traditional treatment options for HNSCC include surgery, radiotherapy, and conventional chemotherapy. However, these treatment options have their specific sequelae, which produce high rates of recurrence and severe treatment-related disabilities. Recent technological advancements have led to tremendous progress in understanding tumor biology, and hence the emergence of several alternative therapeutic modalities for managing cancers (including HNSCC). These treatment options are stem cell targeted therapy, gene therapy, and immunotherapy. Therefore, this review article aims to provide an overview of these alternative treatments of HNSCC.
Collapse
Affiliation(s)
- Keihan Afshari
- Department of Oral and Maxillofacial Surgery, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Karpal Singh Sohal
- Department of Oral and Maxillofacial Surgery, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
3
|
Zhang J, Liu Y, Zang M, Zhu S, Chen B, Li S, Xue B, Yan L. Lentivirus-mediated CDglyTK gene-modified free flaps by intra-artery perfusion show targeted therapeutic efficacy in rat model of breast cancer. BMC Cancer 2019; 19:921. [PMID: 31521130 PMCID: PMC6744674 DOI: 10.1186/s12885-019-6111-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background Free flap-mediated gene therapy in the tumor bed following surgical resection is a promising approach in cancer targeted treatment of residual disease. We investigated the selective killing efficacy of a lentivirus-mediated cytosine deaminase-thymidine kinase (CDglyTK) gene in transplanted breast cancer delivered into a free flap by intra-artery perfusion. Methods Proliferation, apoptosis, and cell cycle of rat SHZ-88 breast cancer cells transfected with a lentivirus-mediated CD/TK gene were measured following treatment with ganciclovir and 5-flucytosine in vitro. A model of residual disease of breast cancer in a rat superficial inferior epigastric artery (SIEA) flap model was used to study the therapeutic potential of a double suicide CD/TK and prodrug system in vivo. Results Killing efficacy of the double suicide CD/TK and prodrug system on SHZ-88 cells was mediated by increased apoptosis and cell cycle arrest at the G1 phase with significant bystander effect. Following recombinant lentivirus transfection of rat SIEA flap by intra-artery perfusion, CD/TK gene expression was limited to the flap, and the volume and weight of transplanted tumors were significantly reduced without observable toxicity. Conclusions SIEA flaps transfected with a lentivirus-mediated CDglyTK gene by intra-artery perfusion effectively suppress transplanted breast tumor growth without obvious systemic toxic effects in rats. Electronic supplementary material The online version of this article (10.1186/s12885-019-6111-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Ba-Da-Chu Road 33#, Beijing, 100144, People's Republic of China
| | - Yuanbo Liu
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Ba-Da-Chu Road 33#, Beijing, 100144, People's Republic of China
| | - Mengqing Zang
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Ba-Da-Chu Road 33#, Beijing, 100144, People's Republic of China
| | - Shan Zhu
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Ba-Da-Chu Road 33#, Beijing, 100144, People's Republic of China
| | - Bo Chen
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Ba-Da-Chu Road 33#, Beijing, 100144, People's Republic of China
| | - Shanshan Li
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Ba-Da-Chu Road 33#, Beijing, 100144, People's Republic of China
| | - Bingjian Xue
- Department of Plastic and Reconstructive Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Ba-Da-Chu Road 33#, Beijing, 100144, People's Republic of China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Ba-Da-Chu Road 33#, Beijing, 100144, People's Republic of China.
| |
Collapse
|
4
|
Chira S, Gulei D, Hajitou A, Berindan-Neagoe I. Restoring the p53 'Guardian' Phenotype in p53-Deficient Tumor Cells with CRISPR/Cas9. Trends Biotechnol 2018; 36:653-660. [PMID: 29478674 DOI: 10.1016/j.tibtech.2018.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/26/2022]
Abstract
With an increasing prevalence in the human population, cancer has become one of the most investigated fields of medicine. Among the potential targets for cancer therapy is the tumor suppressor gene TP53, which is found in a mutated state in approximately 50% of human cancers and is often associated with poor prognosis. We propose a novel, highly tumor-specific delivery system for TP53, based on the CRISPR/Cas9 genome editing technology. This system will restore the normal p53 phenotype in tumor cells by replacing the mutant TP53 gene with a functional copy, leading to sustained expression of p53 protein and tumor regression.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania.
| | - Diana Gulei
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Amin Hajitou
- Cancer Phage Therapy Group, Division of Brain Sciences, Imperial College London, W12 0NN London, UK
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, Oncology Institute Prof. Dr. Ion Chiricuta, 400015 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Ulasov AV, Rosenkranz AA, Sobolev AS. Transcription factors: Time to deliver. J Control Release 2017; 269:24-35. [PMID: 29113792 DOI: 10.1016/j.jconrel.2017.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/17/2022]
Abstract
Transcription factors (TFs) are at the center of the broad regulatory network orchestrating gene expression programs that elicit different biological responses. For a long time, TFs have been considered as potent drug targets due to their implications in the pathogenesis of a variety of diseases. At the same time, TFs, located at convergence points of cellular regulatory pathways, are powerful tools providing opportunities both for cell type change and for managing the state of cells. This task formulation requires the TF modulation problem to come to the fore. We review several ways to manage TF activity (small molecules, transfection, nanocarriers, protein-based approaches), analyzing their limitations and the possibilities to overcome them. Delivery of TFs could revolutionize the biomedical field. Whether this forecast comes true will depend on the ability to develop convenient technologies for targeted delivery of TFs.
Collapse
Affiliation(s)
- Alexey V Ulasov
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Andrey A Rosenkranz
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| | - Alexander S Sobolev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia.
| |
Collapse
|