1
|
Gibert MK, Zhang Y, Saha S, Marcinkiewicz P, Dube C, Hudson K, Sun Y, Bednarek S, Chagari B, Sarkar A, Roig-Laboy C, Neace N, Saoud K, Setiady I, Hanif F, Schiff D, Kumar P, Kefas B, Hafner M, Abounader R. A first comprehensive analysis of Transcribed Ultra Conserved Regions uncovers important regulatory functions of novel non-coding transcripts in gliomas. RESEARCH SQUARE 2024:rs.3.rs-4164642. [PMID: 38699302 PMCID: PMC11065071 DOI: 10.21203/rs.3.rs-4164642/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new oncogene. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.
Collapse
Affiliation(s)
- Myron K Gibert
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Ying Zhang
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Shekhar Saha
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Pawel Marcinkiewicz
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Collin Dube
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Kadie Hudson
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Yunan Sun
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Sylwia Bednarek
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Bilhan Chagari
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Aditya Sarkar
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Christian Roig-Laboy
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Natalie Neace
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Karim Saoud
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Initha Setiady
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Farina Hanif
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - David Schiff
- University of Virginia Department of Neurology, Charlottesville, VA, 22908, USA
| | - Pankaj Kumar
- University of Virginia Department of Public Health Sciences and Bioinformatics Core, Charlottesville, VA, 22908, USA
| | | | | | - Roger Abounader
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
- University of Virginia Department of Neurology, Charlottesville, VA, 22908, USA
- University of Virginia Department of Cancer Center, Charlottesville, VA, 22908, USA
| |
Collapse
|
2
|
Gibert MK, Zhang Y, Saha S, Marcinkiewicz P, Dube C, Hudson K, Sun Y, Bednarek S, Chagari B, Sarkar A, Roig-Laboy C, Neace N, Saoud K, Setiady I, Hanif F, Schiff D, Kumar P, Kefas B, Hafner M, Abounader R. A first comprehensive analysis of Transcribed Ultra Conserved Regions uncovers important regulatory functions of novel non-coding transcripts in gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557444. [PMID: 38562826 PMCID: PMC10983853 DOI: 10.1101/2023.09.12.557444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new oncogene. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.
Collapse
|
3
|
Berriel Pinho VH, Daher JPL, Kanaan S, Medeiros T. Extracellular vesicles in Alzheimer's disease. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-8. [PMID: 38467392 PMCID: PMC10927369 DOI: 10.1055/s-0044-1779296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/01/2023] [Indexed: 03/13/2024]
Abstract
Extracellular vesicles (EVs) are small vesicles released by cells that facilitate cell signaling. They are categorized based on their biogenesis and size. In the context of the central nervous system (CNS), EVs have been extensively studied for their role in both normal physiological functions and diseases like Alzheimer's disease (AD). AD is a neurodegenerative disorder characterized by cognitive decline and neuronal death. EVs have emerged as potential biomarkers for AD due to their involvement in disease progression. Specifically, EVs derived from neurons, astrocytes, and neuron precursor cells exhibit changes in quantity and composition in AD. Neuron-derived EVs have been found to contain key proteins associated with AD pathology, such as amyloid beta (Aß) and tau. Increased levels of Aß in neuron-derived EVs isolated from the plasma have been observed in individuals with AD and mild cognitive impairment, suggesting their potential as early biomarkers. However, the analysis of tau in neuron-derived EVs is still inconclusive. In addition to Aß and tau, neuron-derived EVs also carry other proteins linked to AD, including synaptic proteins. These findings indicate that EVs could serve as biomarkers for AD, particularly for early diagnosis and disease monitoring. However, further research is required to validate their use and explore potential therapeutic applications. To summarize, EVs are small vesicles involved in cell signaling within the CNS. They hold promise as biomarkers for AD, potentially enabling early diagnosis and monitoring of disease progression. Ongoing research aims to refine their use as biomarkers and uncover additional therapeutic applications.
Collapse
Affiliation(s)
| | - João Paulo Lima Daher
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Patologia, NIterói RJ, Brazil.
| | - Salim Kanaan
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Patologia, NIterói RJ, Brazil.
| | - Thalia Medeiros
- Universidade Federal Fluminense, Faculdade de Medicina, Departamento de Patologia, NIterói RJ, Brazil.
| |
Collapse
|
4
|
Gibert MK, Sarkar A, Chagari B, Roig-Laboy C, Saha S, Bednarek S, Kefas B, Hanif F, Hudson K, Dube C, Zhang Y, Abounader R. Transcribed Ultraconserved Regions in Cancer. Cells 2022; 11:1684. [PMID: 35626721 PMCID: PMC9139194 DOI: 10.3390/cells11101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Transcribed ultraconserved regions are putative lncRNA molecules that are transcribed from DNA that is 100% conserved in human, mouse, and rat genomes. This is notable, as lncRNAs are typically poorly conserved. TUCRs remain very understudied in many diseases, including cancer. In this review, we summarize the current literature on TUCRs in cancer with respect to expression deregulation, functional roles, mechanisms of action, and clinical perspectives.
Collapse
Affiliation(s)
- Myron K. Gibert
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Aditya Sarkar
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Bilhan Chagari
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Christian Roig-Laboy
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Shekhar Saha
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Sylwia Bednarek
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Benjamin Kefas
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Farina Hanif
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Kadie Hudson
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Collin Dube
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Ying Zhang
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Roger Abounader
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- NCI Designated Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
5
|
The World of Oral Cancer and Its Risk Factors Viewed from the Aspect of MicroRNA Expression Patterns. Genes (Basel) 2022; 13:genes13040594. [PMID: 35456400 PMCID: PMC9027895 DOI: 10.3390/genes13040594] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Oral cancer is one of the leading causes of death worldwide, with a reported 5-year survival rate of around 50% after treatment. Epigenetic modifications are considered to have a key role in oral carcinogenesis due to histone modifications, aberrant DNA methylation, and altered expression of miRNAs. MicroRNAs (miRNAs) are small non-coding RNAs that have a key role in cancer development by regulating signaling pathways involved in carcinogenesis. MiRNA deregulation identified in oral cancer has led to the idea of using them as potential biomarkers for early diagnosis, prognosis, and the development of novel therapeutic strategies. In recent years, a key role has been observed for risk factors in preventing and treating this malignancy. The purpose of this review is to summarize the recent knowledge about the altered mechanisms of oral cancer due to risk factors and the role of miRNAs in these mechanisms.
Collapse
|
6
|
Fitz NF, Wang J, Kamboh MI, Koldamova R, Lefterov I. Small nucleolar RNAs in plasma extracellular vesicles and their discriminatory power as diagnostic biomarkers of Alzheimer's disease. Neurobiol Dis 2021; 159:105481. [PMID: 34411703 PMCID: PMC9382696 DOI: 10.1016/j.nbd.2021.105481] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
The clinical diagnosis of Alzheimer's disease, at its early stage, remains a difficult task. Advanced imaging technologies and laboratory assays to detect Aβ peptides Aβ42 and Aβ40, total and phosphorylated tau in CSF provide a set of biomarkers of developing AD brain pathology and facilitate the diagnostic process. The search for biofluid biomarkers, other than in CSF, and the development of biomarker assays have accelerated significantly and now represent the fastest-growing field in AD research. The goal of this study was to determine the differential enrichment of noncoding RNAs (ncRNAs) in plasma-derived extracellular vesicles (EV) of AD patients and Cognitively Normal controls (NC). Using RNA-seq, we profiled four significant classes of ncRNAs: miRNAs, snoRNAs, tRNAs, and piRNAs. We report a significant enrichment of SNORDs - a group of snoRNAs, in AD samples compared to NC. To verify the differential enrichment of two clusters of SNORDs - SNORD115 and SNORD116, localized on human chromosome 15q11-q13, we used plasma samples of an independent group of AD patients and NC. We applied ddPCR technique and identified SNORD115 and SNORD116 with a high discriminatory power to differentiate AD samples from NC. The results of our study present evidence that AD is associated with changes in the enrichment of SNORDs, transcribed from imprinted genomic loci, in plasma EV and provide a rationale to further explore the validity of those SNORDs as plasma biomarkers of AD.
Collapse
Affiliation(s)
- Nicholas F Fitz
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Jiebiao Wang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - M Ilyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Radosveta Koldamova
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, United States of America.
| | - Iliya Lefterov
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, United States of America.
| |
Collapse
|
7
|
circFOXO3: Going around the mechanistic networks in cancer by interfering with miRNAs regulatory networks. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166045. [PMID: 33513429 DOI: 10.1016/j.bbadis.2020.166045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/09/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNA) have gained recent interest due to their functional versatility due to their interactions with other RNA species and proteins, all of which underline complex regulatory networks involved in pathogenic mechanisms. As a result, recent insights in circRNA biology are investigating their biomarker and therapeutic potential. One such circRNA is CircFOXO3, which consists of the circularized second exon of the FOXO3 mRNA, a member of the forkhead box transcription factor family involved in the regulation of developmental programs. Recent research focused on the role of circFOXO3 in the context of cancer has highlighted several implications in key tumorigenesis mechanisms, thus consolidating its relevance among other identified circRNAs. In this paper, we will focus on the currently identified case-specific implications of circFOXO3 in cancer, with a focus on the circFOXO3-miRNA-mRNA regulatory networks, its interactions with different proteins, and their cumulated biological effects upon tumor development. Therefore, we aim to provide an integrated perspective of the mechanistic implications of circFOXO3 in different cancers while also highlighting its biomarker or therapeutic potential based on the current evidence.
Collapse
|
8
|
Mohanta A, Chakrabarti K. Dbr1 functions in mRNA processing, intron turnover and human diseases. Biochimie 2020; 180:134-142. [PMID: 33038423 DOI: 10.1016/j.biochi.2020.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022]
Abstract
Pre-mRNA processing and mRNA stability play direct roles in controlling protein abundance in a cell. Before the mRNA can be translated into a protein, the introns in the pre-mRNA transcripts need to be removed by splicing, such that exons can be ligated together and can code for a protein. In this process, the function of the RNA lariat debranching enzyme or Dbr1 provides a rate-limiting step in the intron turnover process and possibly regulating the production of translation competent mRNAs. Surprising new roles of Dbr1 are emerging in cellular metabolism which extends beyond intron turnover processes, ranging from splicing regulation to translational control. In this review, we highlight the importance of the Dbr1 enzyme, its structure and how anomalies in its function could relate to various human diseases.
Collapse
Affiliation(s)
- Arundhati Mohanta
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
9
|
Zimta AA, Sigurjonsson OE, Gulei D, Tomuleasa C. The Malignant Role of Exosomes as Nanocarriers of Rare RNA Species. Int J Mol Sci 2020; 21:ijms21165866. [PMID: 32824183 PMCID: PMC7461500 DOI: 10.3390/ijms21165866] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Nowadays, advancements in the oncology sector regarding diagnosis methods allow us to specifically detect an increased number of cancer patients, some of them in incipient stages. However, one of the main issues consists of the invasive character of most of the diagnosis protocols or complex medical procedures associated with it, that impedes part of the patients to undergo routine checkups. Therefore, in order to increase the number of cancer cases diagnosed in incipient stages, other minimally invasive alternatives must be considered. The current review paper presents the value of rare RNA species isolated from circulatory exosomes as biomarkers of diagnosis, prognosis or even therapeutic intervention. Rare RNAs are most of the time overlooked in current research in favor of the more abundant RNA species like microRNAs. However, their high degree of stability, low variability and, for most of them, conservation across species could shift the interest toward these types of RNAs. Moreover, due to their low abundance, the variation interval in terms of the number of sequences with differential expression between samples from healthy individuals and cancer patients is significantly diminished and probably easier to interpret in a clinical context.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-A.Z.); (C.T.)
| | - Olafur Eysteinn Sigurjonsson
- The Blood Bank, Landspitali University Hospital, 121 Reykjavik, Iceland;
- School of Science and Engineering, Reykjavik University, 107 Reykjavik, Iceland
| | - Diana Gulei
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-A.Z.); (C.T.)
- Correspondence: or
| | - Ciprian Tomuleasa
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.-A.Z.); (C.T.)
- Department of Hematology, Oncology Institute Prof. Dr. Ion Chiricuta, 400015 Cluj-Napoca, Romania
| |
Collapse
|
10
|
Guglas K, Kołodziejczak I, Kolenda T, Kopczyńska M, Teresiak A, Sobocińska J, Bliźniak R, Lamperska K. YRNAs and YRNA-Derived Fragments as New Players in Cancer Research and Their Potential Role in Diagnostics. Int J Mol Sci 2020; 21:ijms21165682. [PMID: 32784396 PMCID: PMC7460810 DOI: 10.3390/ijms21165682] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
YRNAs are a type of short, noncoding RNAs. A total of four different transcripts can be distinguished, which are YRNA1, YRNA3, YRNA4 and YRNA5. All YRNAs are relatively small, made up of about 100 nucleotides each. YRNAs are characterized by a stem-loop structure and each part of that structure carries a different function. YRNAs are transcribed in the nucleus by RNA polymerase III. Then, the YRNA molecule is bound to the polyuridine tail of the La protein responsible for both its nuclear retention and protection from degradation. They also bind to the Ro60 protein, making the molecule more stable. In turn, YRNA-derived small RNAs (YsRNAs) are a class of YRNAs produced in apoptotic cells as a result of YRNA degradation. This process is performed by caspase-3-dependent pathways that form two groups of YsRNAs, with lengths of either approximately 24 or 31 nucleotides. From all four YRNA transcripts, 75 well-described pseudogenes are generated as a result of the mutation. However, available data indicates the formation of up to 1000 pseudogenes. YRNAs and YRNA-derived small RNAs may play a role in carcinogenesis due to their altered expression in cancers and influence on cell proliferation and inflammation. Nevertheless, our knowledge is still limited, and more research is required. The main aim of this review is to describe the current state of knowledge about YRNAs, their function and contribution to carcinogenesis, as well as their potential role in cancer diagnostics. To confirm the promising potential of YRNAs and YRNA-derived fragments as biomarkers, their significant role in several tumor types was taken into consideration.
Collapse
Affiliation(s)
- Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Iga Kołodziejczak
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
- International Institute for Molecular Oncology, 60-203 Poznań, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Magda Kopczyńska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Joanna Sobocińska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| |
Collapse
|
11
|
Braicu C, Zanoaga O, Zimta AA, Tigu AB, Kilpatrick KL, Bishayee A, Nabavi SM, Berindan-Neagoe I. Natural compounds modulate the crosstalk between apoptosis- and autophagy-regulated signaling pathways: Controlling the uncontrolled expansion of tumor cells. Semin Cancer Biol 2020; 80:218-236. [PMID: 32502598 DOI: 10.1016/j.semcancer.2020.05.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
Abstract
Due to the high number of annual cancer-related deaths, and the economic burden that this malignancy affects today's society, the study of compounds isolated from natural sources should be encouraged. Most cancers are the result of a combined effect of lifestyle, environmental factors, and genetic and hereditary components. Recent literature reveals an increase in the interest for the study of phytochemicals from traditional medicine, this being a valuable resource for modern medicine to identify novel bioactive agents with potential medicinal applications. Phytochemicals are components of traditional medicine that are showing promising application in modern medicine due to their antitumor activities. Recent studies regarding two major mechanisms underlying cancer development and regulation, apoptosis and autophagy, have shown that the signaling pathways of both these processes are significantly interconnected through various mechanisms of crosstalk. Phytochemicals are able to activate pro-autophagic and pro-apoptosis mechanisms. Understanding the molecular mechanism involved in apoptosis-autophagy relationship modulated by phytochemicals plays a key role in development of a new therapeutic strategy for cancer treatment. The purpose of this review is to outline the bioactive properties of the natural phytochemicals with validated antitumor activity, focusing particularly on their role in the regulation of apoptosis and autophagy crosstalk that triggers the uncontrolled expansion of tumor cells. Furthermore, we have also critically discussed the limitations and challenges of existing research strategies and the prospective research directions in this field.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania; Babeș-Bolyai University, Faculty of Biology and Geology, 42 Republicii Street, 400015, Cluj-Napoca, Romania
| | | | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 40015, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 400015, Cluj-Napoca, Romania.
| |
Collapse
|
12
|
Lin Y, Holden V, Dhilipkannah P, Deepak J, Todd NW, Jiang F. A Non-Coding RNA Landscape of Bronchial Epitheliums of Lung Cancer Patients. Biomedicines 2020; 8:E88. [PMID: 32294932 PMCID: PMC7235744 DOI: 10.3390/biomedicines8040088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 12/16/2022] Open
Abstract
We propose to systematically identify a non-coding RNA (ncRNA) profile of exfoliated bronchial epitheliums of sputum from lung cancer patients. Bronchial epithelial cells enriched from sputum of 32 lung cancer patients and 33 cancer-free smokers were analyzed by next-generation sequencing to comprehensively characterize the ncRNA profiles. In addition, 108 miRNAs, 88 small nucleolar RNAs, 13 piwi-interacting RNAs, 6 transfer RNAs, 4 ribosomal RNAs, 19 small nuclear RNAs, and 25 long-noncoding (lnc) RNAs displayed a significantly different level in bronchial epitheliums of sputum of lung cancer patients versus cancer-free smokers (all <0.001). PCR analysis confirmed their different expression levels in the sputum specimens. A high expression of SNHG9, an lncRNA, was validated in 78 lung tumor tissues, and the expression was inversely associated with overall survival of lung cancer patients (p = 0.002). Knockdown of SNHG9 in cancer cells reduced the cell growth, proliferation, and invasion in vitro and tumorigenesis in vivo. The multiple differentially expressed ncRNAs in bronchial epitheliums may contribute to the development and progression of lung cancer and provide potential biomarkers and therapeutic targets for the disease.
Collapse
Affiliation(s)
- Yanli Lin
- Departments of Pathology, University of Maryland School of Medicine, 10 S. Pine St. Baltimore, MD 21201, USA; (Y.L.); (P.D.)
| | - Van Holden
- Department of Medicine, University of Maryland School of Medicine, 22 S. Greene St. Baltimore, MD 21201, USA; (V.H.); (J.D.); (N.W.T.)
| | - Pushpawallie Dhilipkannah
- Departments of Pathology, University of Maryland School of Medicine, 10 S. Pine St. Baltimore, MD 21201, USA; (Y.L.); (P.D.)
| | - Janaki Deepak
- Department of Medicine, University of Maryland School of Medicine, 22 S. Greene St. Baltimore, MD 21201, USA; (V.H.); (J.D.); (N.W.T.)
| | - Nevins W. Todd
- Department of Medicine, University of Maryland School of Medicine, 22 S. Greene St. Baltimore, MD 21201, USA; (V.H.); (J.D.); (N.W.T.)
| | - Feng Jiang
- Department of Medicine, University of Maryland School of Medicine, 22 S. Greene St. Baltimore, MD 21201, USA; (V.H.); (J.D.); (N.W.T.)
| |
Collapse
|
13
|
Zimta AA, Tigu AB, Braicu C, Stefan C, Ionescu C, Berindan-Neagoe I. An Emerging Class of Long Non-coding RNA With Oncogenic Role Arises From the snoRNA Host Genes. Front Oncol 2020; 10:389. [PMID: 32318335 PMCID: PMC7154078 DOI: 10.3389/fonc.2020.00389] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/24/2022] Open
Abstract
The small nucleolar RNA host genes (SNHGs) are a group of long non-coding RNAs, which are reported in many studies as being overexpressed in various cancers. With very few exceptions, the SNHGs (SNHG1, SNHG3, SNHG5, SNHG6, SNHG7, SNHG12, SNHG15, SNHG16, SNHG20) are recognized as inducing increased proliferation, cell cycle progression, invasion, and metastasis of cancer cells, which makes this class of transcripts a viable biomarker for cancer development and aggressiveness. Through our literature research, we also found that silencing of SNHGs through small interfering RNAs or short hairpin RNAs is very effective in both in vitro and in vivo experiments by lowering the aggressiveness of solid cancers. The knockdown of SNHG as a new cancer therapeutic option should be investigated more in the future.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Stefan
- African Organisation for Research and Training in Cancer, Cape Town, South Africa
| | - Calin Ionescu
- Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. I. Chiricuta”, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Gaffo E, Bortolomeazzi M, Bisognin A, Di Battista P, Lovisa F, Mussolin L, Bortoluzzi S. MiR&moRe2: A Bioinformatics Tool to Characterize microRNAs and microRNA-Offset RNAs from Small RNA-Seq Data. Int J Mol Sci 2020; 21:ijms21051754. [PMID: 32143373 PMCID: PMC7084216 DOI: 10.3390/ijms21051754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/26/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNA-offset RNAs (moRNAs) are microRNA-like small RNAs generated by microRNA precursors. To date, little is known about moRNAs and bioinformatics tools to inspect their expression are still missing. We developed miR&moRe2, the first bioinformatics method to consistently characterize microRNAs, moRNAs, and their isoforms from small RNA sequencing data. To illustrate miR&moRe2 discovery power, we applied it to several published datasets. MoRNAs identified by miR&moRe2 were in agreement with previous research findings. Moreover, we observed that moRNAs and new microRNAs predicted by miR&moRe2 were downregulated upon the silencing of the microRNA-biogenesis pathway. Further, in a sizeable dataset of human blood cell populations, tens of novel miRNAs and moRNAs were discovered, some of them with significantly varied expression levels among the cell types. Results demonstrate that miR&moRe2 is a valid tool for a comprehensive study of small RNAs generated from microRNA precursors and could help to investigate their biogenesis and function.
Collapse
Affiliation(s)
- Enrico Gaffo
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (M.B.); (A.B.)
- Correspondence: (E.G.); (S.B.); Tel.: +39-049-827-6502 (S.B.)
| | - Michele Bortolomeazzi
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (M.B.); (A.B.)
| | - Andrea Bisognin
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (M.B.); (A.B.)
| | - Piero Di Battista
- Division of Pediatric Hematology, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (P.D.B.); (F.L.); (L.M.)
- Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy
| | - Federica Lovisa
- Division of Pediatric Hematology, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (P.D.B.); (F.L.); (L.M.)
- Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy
| | - Lara Mussolin
- Division of Pediatric Hematology, Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy; (P.D.B.); (F.L.); (L.M.)
- Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy
| | - Stefania Bortoluzzi
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; (M.B.); (A.B.)
- Interdepartmental Research Center for Innovative Biotechnologies (CRIBI), University of Padova, 35131 Padova, Italy
- Correspondence: (E.G.); (S.B.); Tel.: +39-049-827-6502 (S.B.)
| |
Collapse
|
15
|
Gu X, Wang L, Boldrup L, Coates PJ, Fahraeus R, Sgaramella N, Wilms T, Nylander K. AP001056.1, A Prognosis-Related Enhancer RNA in Squamous Cell Carcinoma of the Head and Neck. Cancers (Basel) 2019; 11:cancers11030347. [PMID: 30862109 PMCID: PMC6468641 DOI: 10.3390/cancers11030347] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/24/2022] Open
Abstract
A growing number of long non-coding RNAs (lncRNAs) have been linked to squamous cell carcinoma of the head and neck (SCCHN). A subclass of lncRNAs, termed enhancer RNAs (eRNAs), are derived from enhancer regions and could contribute to enhancer function. In this study, we developed an integrated data analysis approach to identify key eRNAs in SCCHN. Tissue-specific enhancer-derived RNAs and their regulated genes previously predicted using the computational pipeline PreSTIGE, were considered as putative eRNA-target pairs. The interactive web servers, TANRIC (the Atlas of Noncoding RNAs in Cancer) and cBioPortal, were used to explore the RNA levels and clinical data from the Cancer Genome Atlas (TCGA) project. Requiring that key eRNAs should show significant associations with overall survival (Kaplan⁻Meier log-rank test, p < 0.05) and the predicted target (correlation coefficient r > 0.4, p < 0.001), we identified five key eRNA candidates. The most significant survival-associated eRNA was AP001056.1 with ICOSLG encoding an immune checkpoint protein as its regulated target. Another 1640 genes also showed significant correlation with AP001056.1 (r > 0.4, p < 0.001), with the "immune system process" being the most significantly enriched biological process (adjusted p < 0.001). Our results suggest that AP001056.1 is a key immune-related eRNA in SCCHN with a positive impact on clinical outcome.
Collapse
Affiliation(s)
- Xiaolian Gu
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden.
| | - Lixiao Wang
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden.
| | - Linda Boldrup
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden.
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic.
| | - Robin Fahraeus
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden.
- RECAMO, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic.
- Équipe Labellisée Ligue Contre le Cancer, INSERM UMRS1162, Institut de Génétique Moléculaire, Université Paris 7, IUH Hôpital St. Louis, 75010 Paris, France.
| | - Nicola Sgaramella
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden.
| | - Torben Wilms
- Department of Clinical Sciences/ENT, Umeå University, 90185 Umeå, Sweden.
| | - Karin Nylander
- Department of Medical Biosciences/Pathology, Umeå University, 90185 Umeå, Sweden.
| |
Collapse
|
16
|
Abstract
Head and neck cancers (HNCs) are the most prevalent and aggressive type of cancers. Genetic, epigenetic, environmental and viral risk-factors are associated with HNC carcinogenesis. Persistent infection of oncogenic human papillomaviruses (HR-HPVs) represent distinct biological, molecular and epigenetic entities in HNCs. There are three main epigenetic mechanisms that regulate transcription, these are DNA methylation, histone modifications and alteration in non-coding RNA networks, which can dissected to identify innovative and accurate epigenetic biomarkers for diagnosis and prognosis of HNC patients. Due to the lacunae of accurate distinctive biomarkers for the definite diagnosis of HNC, the identification of predictive epigenetic markers is necessary that might modify or increase HNC patient’s survival. In this mini review, we briefly summarize the current knowledge of different epigenetic biomarkers in HNC.
Collapse
Affiliation(s)
- Shilpi Gupta
- National Institute of Cancer Prevention and Research (NICPR), I-7, Sector-39, Noida-201301, India
| | - Prabhat Kumar
- Stem Cell and Cancer Research Lab, Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida-201313, India
| | - Jayant Maini
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Harsimrut Kaur
- Department of Chemistry and Biochemistry (SBSR), Sharda University, Greater Noida-201310, India
| |
Collapse
|
17
|
Aberrant miRNAs expressed in HER-2 negative breast cancers patient. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:257. [PMID: 30342533 PMCID: PMC6196003 DOI: 10.1186/s13046-018-0920-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022]
Abstract
Background Breast cancer is a highly heterogeneous pathology, exhibiting a number of subtypes commonly associated with a poor outcome. Due to their high stability, microRNAs are often regarded as non-invasive cancer biomarkers, having an expression pattern specific for their ‘cell of origin’. Method Triple negative breast cancer (TNBC: ER-, PR-, Her-2-) and double positive breast cancer (DPBC: ER+, PR+, Her-2) miRNA expression patterns were obtained by analysis of the TCGA (The Cancer Genome Atlas) data, followed by PCR-array analysis on plasma samples from 20 TNBC patients, 14 DPBC patients and 11 controls. Results Three downregulated and nine upregulated miRNAs were obtained from the TNBC analysis. Five overexpressed miRNAs were identified in the DPBC group. Four of the dysregulated miRNAs (miR-10a, miR-125b, miR-210 and miR-489) were common for both groups. The cluster miR-17-92 (miR-17, miR-20a, miR-20b, and miR-93), along with miR-130, miR-22 and miR-29a/c, were found to differentiate between TNBC and DPBC. A panel of five transcripts (miR-10a, miR-125, miR-193b, miR-200b and miR-489) was validated in a new set of plasma samples. The overlapping of TCGA and plasma profiling data revealed miR-200b, miR-200c, miR-210 and miR-29c as common signature. MiR-200b was validated on additional normal and tumor tissue samples. The expression level of this transcript from the TCGA data was correlated with lung and bone metastatic genes. Conclusion The miR-200b presents a great potential for the future advancements in the diagnostic/prognostic and therapeutic approach of TNBC, along with other coding or non-coding transcripts. However, this needs to be further integrated in a regulatory network that acts in conjunction with other markers that affect the patients’ prognosis or response to therapy. Electronic supplementary material The online version of this article (10.1186/s13046-018-0920-2) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Irimie AI, Braicu C, Cojocneanu R, Magdo L, Onaciu A, Ciocan C, Mehterov N, Dudea D, Buduru S, Berindan-Neagoe I. Differential Effect of Smoking on Gene Expression in Head and Neck Cancer Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071558. [PMID: 30041465 PMCID: PMC6069101 DOI: 10.3390/ijerph15071558] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
Smoking is a well-known behavior that has an important negative impact on human health, and is considered to be a significant factor related to the development and progression of head and neck squamous cell carcinomas (HNSCCs). Use of high-dimensional datasets to discern novel HNSCC driver genes related to smoking represents an important challenge. The Cancer Genome Atlas (TCGA) analysis was performed in three co-existing groups of HNSCC in order to assess whether gene expression landscape is affected by tobacco smoking, having quit, or non-smoking status. We identified a set of differentially expressed genes that discriminate between smokers and non-smokers or based on human papilloma virus (HPV)16 status, or the co-occurrence of these two exposome components in HNSCC. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways classification shows that most of the genes are specific to cellular metabolism, emphasizing metabolic detoxification pathways, metabolism of chemical carcinogenesis, or drug metabolism. In the case of HPV16-positive patients it has been demonstrated that the altered genes are related to cellular adhesion and inflammation. The correlation between smoking and the survival rate was not statistically significant. This emphasizes the importance of the complex environmental exposure and genetic factors in order to establish prevention assays and personalized care system for HNSCC, with the potential for being extended to other cancer types.
Collapse
Affiliation(s)
- Alexandra Iulia Irimie
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutics, Aesthetic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, 23 Marinescu Street, Cluj-Napoca 40015, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca 40015, Romania.
| | - Roxana Cojocneanu
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca 40015, Romania.
| | - Lorand Magdo
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca 40015, Romania.
| | - Anca Onaciu
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 23 Marinescu Street, Cluj-Napoca 40015, Romania.
| | - Cristina Ciocan
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu Hatieganu, 23 Marinescu Street, Cluj-Napoca 40015, Romania.
| | - Nikolay Mehterov
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria.
- Technological Center for Emergency Medicine, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria.
| | - Diana Dudea
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutics, Aesthetic, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, 23 Marinescu Street, Cluj-Napoca 40015, Romania.
| | - Smaranda Buduru
- Prosthetics and Dental Materials, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, 32 Clinicilor Street, Cluj-Napoca 400006, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca 40015, Romania.
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute Ion Chiricuta, Republicii 34th Street, Cluj-Napoca 400015, Romania.
| |
Collapse
|