1
|
Tjaden B. TargetRNA3: predicting prokaryotic RNA regulatory targets with machine learning. Genome Biol 2023; 24:276. [PMID: 38041165 PMCID: PMC10691042 DOI: 10.1186/s13059-023-03117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Small regulatory RNAs pervade prokaryotes, with the best-studied family of these non-coding genes corresponding to trans-acting regulators that bind via base pairing to their message targets. Given the increasing frequency with which these genes are being identified, it is important that methods for illuminating their regulatory targets keep pace. Using a machine learning approach, we investigate thousands of interactions between small RNAs and their targets, and we interrogate more than a hundred features indicative of these interactions. We present a new method, TargetRNA3, for predicting targets of small RNA regulators and show that it outperforms existing approaches. TargetRNA3 is available at https://cs.wellesley.edu/~btjaden/TargetRNA3 .
Collapse
Affiliation(s)
- Brian Tjaden
- Department of Computer Science, Wellesley College, Wellesley, MA, USA.
| |
Collapse
|
2
|
Ferrara S, Brignoli T, Bertoni G. Little reason to call them small noncoding RNAs. Front Microbiol 2023; 14:1191166. [PMID: 37455713 PMCID: PMC10339803 DOI: 10.3389/fmicb.2023.1191166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Hundreds of different species of small RNAs can populate a bacterial cell. This small transcriptome contains important information for the adaptation of cellular physiology to environmental changes. Underlying cellular networks involving small RNAs are RNA-RNA and RNA-protein interactions, which are often intertwined. In addition, small RNAs can function as mRNAs. In general, small RNAs are referred to as noncoding because very few are known to contain translated open reading frames. In this article, we intend to highlight that the number of small RNAs that fall within the set of translated RNAs is bound to increase. In addition, we aim to emphasize that the dynamics of the small transcriptome involve different functional codes, not just the genetic code. Therefore, since the role of small RNAs is always code-driven, we believe that there is little reason to continue calling them small noncoding RNAs.
Collapse
|
3
|
Reva O, Messina E, La Cono V, Crisafi F, Smedile F, La Spada G, Marturano L, Selivanova EA, Rohde M, Krupovic M, Yakimov MM. Functional diversity of nanohaloarchaea within xylan-degrading consortia. Front Microbiol 2023; 14:1182464. [PMID: 37323909 PMCID: PMC10266531 DOI: 10.3389/fmicb.2023.1182464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Extremely halophilic representatives of the phylum Candidatus Nanohaloarchaeota (members of the DPANN superphyla) are obligately associated with extremely halophilic archaea of the phylum Halobacteriota (according to the GTDB taxonomy). Using culture-independent molecular techniques, their presence in various hypersaline ecosystems around the world has been confirmed over the past decade. However, the vast majority of nanohaloarchaea remain uncultivated, and thus their metabolic capabilities and ecophysiology are currently poorly understood. Using the (meta)genomic, transcriptomic, and DNA methylome platforms, the metabolism and functional prediction of the ecophysiology of two novel extremely halophilic symbiotic nanohaloarchaea (Ca. Nanohalococcus occultus and Ca. Nanohalovita haloferacivicina) stably cultivated in the laboratory as members of a xylose-degrading binary culture with a haloarchaeal host, Haloferax lucentense, was determined. Like all known DPANN superphylum nanoorganisms, these new sugar-fermenting nanohaloarchaea lack many fundamental biosynthetic repertoires, making them exclusively dependent on their respective host for survival. In addition, given the cultivability of the new nanohaloarchaea, we managed to discover many unique features in these new organisms that have never been observed in nano-sized archaea both within the phylum Ca. Nanohaloarchaeota and the entire superphylum DPANN. This includes the analysis of the expression of organism-specific non-coding regulatory (nc)RNAs (with an elucidation of their 2D-secondary structures) as well as profiling of DNA methylation. While some ncRNA molecules have been predicted with high confidence as RNAs of an archaeal signal recognition particle involved in delaying protein translation, others resemble the structure of ribosome-associated ncRNAs, although none belong to any known family. Moreover, the new nanohaloarchaea have very complex cellular defense mechanisms. In addition to the defense mechanism provided by the type II restriction-modification system, consisting of Dcm-like DNA methyltransferase and Mrr restriction endonuclease, Ca. Nanohalococcus encodes an active type I-D CRISPR/Cas system, containing 77 spacers divided into two loci. Despite their diminutive genomes and as part of their host interaction mechanism, the genomes of new nanohaloarchaea do encode giant surface proteins, and one of them (9,409 amino acids long) is the largest protein of any sequenced nanohaloarchaea and the largest protein ever discovered in cultivated archaea.
Collapse
Affiliation(s)
- Oleg Reva
- Department of Biochemistry, Genetics and Microbiology, Centre for Bioinformatics and Computational Biology, University of Pretoria, Pretoria, South Africa
| | | | - Violetta La Cono
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| | - Francesca Crisafi
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| | - Francesco Smedile
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| | - Gina La Spada
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| | - Laura Marturano
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| | - Elena A. Selivanova
- Institute for Cellular and Intracellular Symbiosis, Ural Branch, Russian Academy of Sciences, Orenburg, Russia
| | - Manfred Rohde
- Central Facility for Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Michail M. Yakimov
- Extreme Microbiology, Biotechnology and Astrobiology Group, Institute of Polar Research, ISP-CNR, Messina, Italy
| |
Collapse
|
4
|
Lorenzetti APR, Kusebauch U, Zaramela LS, Wu WJ, de Almeida JPP, Turkarslan S, L. G. de Lomana A, Gomes-Filho JV, Vêncio RZN, Moritz RL, Koide T, Baliga NS. A Genome-Scale Atlas Reveals Complex Interplay of Transcription and Translation in an Archaeon. mSystems 2023; 8:e0081622. [PMID: 36912639 PMCID: PMC10134880 DOI: 10.1128/msystems.00816-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
The scale of post-transcriptional regulation and the implications of its interplay with other forms of regulation in environmental acclimation are underexplored for organisms of the domain Archaea. Here, we have investigated the scale of post-transcriptional regulation in the extremely halophilic archaeon Halobacterium salinarum NRC-1 by integrating the transcriptome-wide locations of transcript processing sites (TPSs) and SmAP1 binding, the genome-wide locations of antisense RNAs (asRNAs), and the consequences of RNase_2099C knockout on the differential expression of all genes. This integrated analysis has discovered that 54% of all protein-coding genes in the genome of this haloarchaeon are likely targeted by multiple mechanisms for putative post-transcriptional processing and regulation, with about 20% of genes likely being regulated by combinatorial schemes involving SmAP1, asRNAs, and RNase_2099C. Comparative analysis of mRNA levels (transcriptome sequencing [RNA-Seq]) and protein levels (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry [SWATH-MS]) for 2,579 genes over four phases of batch culture growth in complex medium generated additional evidence for the conditional post-transcriptional regulation of 7% of all protein-coding genes. We demonstrate that post-transcriptional regulation may act to fine-tune specialized and rapid acclimation to stressful environments, e.g., as a switch to turn on gas vesicle biogenesis to promote vertical relocation under anoxic conditions and modulate the frequency of transposition by insertion sequence (IS) elements of the IS200/IS605, IS4, and ISH3 families. Findings from this study are provided as an atlas in a public Web resource (https://halodata.systemsbiology.net). IMPORTANCE While the transcriptional regulation landscape of archaea has been extensively investigated, we currently have limited knowledge about post-transcriptional regulation and its driving mechanisms in this domain of life. In this study, we collected and integrated omics data from multiple sources and technologies to infer post-transcriptionally regulated genes and the putative mechanisms modulating their expression at the protein level in Halobacterium salinarum NRC-1. The results suggest that post-transcriptional regulation may drive environmental acclimation by regulating hallmark biological processes. To foster discoveries by other research groups interested in the topic, we extended our integrated data to the public in the form of an interactive atlas (https://halodata.systemsbiology.net).
Collapse
Affiliation(s)
- Alan P. R. Lorenzetti
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - Lívia S. Zaramela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, Washington, USA
| | - João P. P. de Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - José V. Gomes-Filho
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Z. N. Vêncio
- Department of Computation and Mathematics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Tie Koide
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
- Lawrence Berkeley National Lab, Berkeley, California, USA
| |
Collapse
|
5
|
Abstract
Small RNAs are ubiquitous regulators of gene expression that participate in nearly all aspects of physiology in a wide range of organisms. There are many different classes of eukaryotic small RNAs that play regulatory roles at every level of gene expression, including transcription, RNA stability, and translation. While eukaryotic small RNAs display diverse functions across and within classes, they are generally grouped functionally based on the machinery required for their biogenesis, the effector proteins they associate with, and their molecular characteristics. The development of techniques to clone and sequence small RNAs has been critical for their identification, yet the ligation-dependent addition of RNA adapters and the use of reverse transcriptase to generate cDNA in traditional library preparation protocols can be unsuitable to detect certain small RNA subtypes. In particular, 3' or 5' chemical modifications that are characteristic of specific types of small RNAs can impede the ligation-dependent addition of RNA adapters, while internal RNA modifications can interfere with accurate reverse transcription. The inability to clone certain small RNA subtypes with traditional protocols results in an inaccurate assessment of small RNA abundance and diversity, where some RNAs appear over-represented and others are not detected. This overview aims to guide users on how to design small RNA cloning workflows in eukaryotes to more accurately capture specific small RNAs of interest. Hence, we discuss the molecular biology underlying the identification and quantitation of small RNAs, explore the limitations of commonly used protocols, and detail the alternative approaches that can be used to enrich specific small RNA classes. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Olivia J Crocker
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Natalie A Trigg
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Colin C Conine
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Torri A, Jaeger J, Pradeu T, Saleh MC. The origin of RNA interference: Adaptive or neutral evolution? PLoS Biol 2022; 20:e3001715. [PMID: 35767561 PMCID: PMC9275709 DOI: 10.1371/journal.pbio.3001715] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
The origin of RNA interference (RNAi) is usually explained by a defense-based hypothesis, in which RNAi evolved as a defense against transposable elements (TEs) and RNA viruses and was already present in the last eukaryotic common ancestor (LECA). However, since RNA antisense regulation and double-stranded RNAs (dsRNAs) are ancient and widespread phenomena, the origin of defensive RNAi should have occurred in parallel with its regulative functions to avoid imbalances in gene regulation. Thus, we propose a neutral evolutionary hypothesis for the origin of RNAi in which qualitative system drift from a prokaryotic antisense RNA gene regulation mechanism leads to the formation of RNAi through constructive neutral evolution (CNE). We argue that RNAi was already present in the ancestor of LECA before the need for a new defense system arose and that its presence helped to shape eukaryotic genomic architecture and stability. Where does RNA interference come from? This Essay describes a new step-by-step evolutionary model of how RNA interference might have originated in early eukaryotes through neutral events from the molecular machinery present in prokaryotes.
Collapse
Affiliation(s)
- Alessandro Torri
- Virus & RNA interference Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
- * E-mail: (AT); (M-CS)
| | | | - Thomas Pradeu
- ImmunoConcEpT, CNRS UMR 5164, University of Bordeaux, Bordeaux, France
- Institut d’histoire et de philosophie des sciences et des techniques, CNRS UMR 8590, Pantheon-Sorbonne University, Paris, France
| | - Maria-Carla Saleh
- Virus & RNA interference Unit, Department of Virology, Institut Pasteur, CNRS UMR 3569, Université Paris Cité, Paris, France
- * E-mail: (AT); (M-CS)
| |
Collapse
|
7
|
Gelsinger DR, DiRuggiero J. Small RNA-Sequencing Library Preparation for the Halophilic Archaeon Haloferax volcanii. Methods Mol Biol 2022; 2522:243-254. [PMID: 36125754 DOI: 10.1007/978-1-0716-2445-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Posttranscriptional regulation actuated by small RNAs (sRNAs) plays essential roles in a wide variety of cellular processes, especially in stress responses and environmental signaling. Hundreds of sRNAs have recently been discovered in archaea using genome-wide approaches but the molecular mechanisms of only a few have been characterized experimentally. Here, we describe how to build sRNA sequencing libraries using size-selected total RNA in the model archaeon, Haloferax volcanii , to provide a tool to further characterize sRNAs in archaea.
Collapse
Affiliation(s)
- Diego Rivera Gelsinger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Jocelyne DiRuggiero
- Department of Biology and Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
Gelsinger DR, Reddy R, Whittington K, Debic S, DiRuggiero J. Post-transcriptional regulation of redox homeostasis by the small RNA SHOxi in haloarchaea. RNA Biol 2021; 18:1867-1881. [PMID: 33522404 PMCID: PMC8583180 DOI: 10.1080/15476286.2021.1874717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
While haloarchaea are highly resistant to oxidative stress, a comprehensive understanding of the processes regulating this remarkable response is lacking. Oxidative stress-responsive small non-coding RNAs (sRNAs) have been reported in the model archaeon, Haloferax volc anii, but targets and mechanisms have not been elucidated. Using a combination of high throughput and reverse molecular genetic approaches, we elucidated the functional role of the most up-regulated intergenic sRNA during oxidative stress in H. volcanii, named Small RNA in Haloferax Oxidative Stress (SHOxi). SHOxi was predicted to form a stable secondary structure with a conserved stem-loop region as the potential binding site for trans-targets. NAD-dependent malic enzyme mRNA, identified as a putative target of SHOxi, interacted directly with a putative 'seed' region within the predicted stem loop of SHOxi. Malic enzyme catalyzes the oxidative decarboxylation of malate into pyruvate using NAD+ as a cofactor. The destabilization of malic enzyme mRNA, and the decrease in the NAD+/NADH ratio, resulting from the direct RNA-RNA interaction between SHOxi and its trans-target was essential for the survival of H. volcanii to oxidative stress. These findings indicate that SHOxi likely regulates redox homoeostasis during oxidative stress by the post-transcriptional destabilization of malic enzyme mRNA. SHOxi-mediated regulation provides evidence that the fine-tuning of metabolic cofactors could be a core strategy to mitigate damage from oxidative stress and confer resistance. This study is the first to establish the regulatory effects of sRNAs on mRNAs during the oxidative stress response in Archaea.
Collapse
Affiliation(s)
| | - Rahul Reddy
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Sara Debic
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Jocelyne DiRuggiero
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Martinez-Liu L, Hernandez-Guerrero R, Rivera-Gomez N, Martinez-Nuñez MA, Escobar-Turriza P, Peeters E, Perez-Rueda E. Comparative genomics of DNA-binding transcription factors in archaeal and bacterial organisms. PLoS One 2021; 16:e0254025. [PMID: 34214112 PMCID: PMC8253408 DOI: 10.1371/journal.pone.0254025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/17/2021] [Indexed: 11/19/2022] Open
Abstract
Archaea represent a diverse phylogenetic group that includes free-living, extremophile, mesophile, symbiont, and opportunistic organisms. These prokaryotic organisms share a high significant similarity with the basal transcriptional machinery of Eukarya, and they share regulatory mechanisms with Bacteria, such as operonic organization and DNA-binding transcription factors (TFs). In this work, we identified the repertoire of TFs in 415 archaeal genomes and compared them with their counterparts in bacterial genomes. The comparisons of TFs, at a global level and per family, allowed us to identify similarities and differences between the repertoires of regulatory proteins of bacteria and archaea. For example, 11 of 62 families are more highly abundant in archaea than bacteria, and 13 families are abundant in bacteria but not in archaea and 38 families have similar abundances in the two groups. In addition, we found that archaeal TFs have a lower isoelectric point than bacterial proteins, i.e., they contain more acidic amino acids, and are smaller than bacterial TFs. Our findings suggest a divergence occurred for the regulatory proteins, even though they are common to archaea and bacteria. We consider that this analysis contributes to the comprehension of the structure and functionality of regulatory proteins of archaeal organisms.
Collapse
Affiliation(s)
- Luis Martinez-Liu
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Rafael Hernandez-Guerrero
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Nancy Rivera-Gomez
- Catedras-CONACyT, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | | | - Pedro Escobar-Turriza
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
- Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Eveline Peeters
- Research Group of Microbiology, Vrije Universiteit Brussel, Ixelles, Belgium
| | - Ernesto Perez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
- * E-mail:
| |
Collapse
|
10
|
Ibrahim AGAER, Vêncio RZN, Lorenzetti APR, Koide T. Halobacterium salinarum and Haloferax volcanii Comparative Transcriptomics Reveals Conserved Transcriptional Processing Sites. Genes (Basel) 2021; 12:genes12071018. [PMID: 34209065 PMCID: PMC8303175 DOI: 10.3390/genes12071018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/15/2023] Open
Abstract
Post-transcriptional processing of messenger RNA is an important regulatory strategy that allows relatively fast responses to changes in environmental conditions. In halophile systems biology, the protein perspective of this problem (i.e., ribonucleases which implement the cleavages) is generally more studied than the RNA perspective (i.e., processing sites). In the present in silico work, we mapped genome-wide transcriptional processing sites (TPS) in two halophilic model organisms, Halobacterium salinarum NRC-1 and Haloferax volcanii DS2. TPS were established by reanalysis of publicly available differential RNA-seq (dRNA-seq) data, searching for non-primary (monophosphorylated RNAs) enrichment. We found 2093 TPS in 43% of H. salinarum genes and 3515 TPS in 49% of H. volcanii chromosomal genes. Of the 244 conserved TPS sites found, the majority were located around start and stop codons of orthologous genes. Specific genes are highlighted when discussing antisense, ribosome and insertion sequence associated TPS. Examples include the cell division gene ftsZ2, whose differential processing signal along growth was detected and correlated with post-transcriptional regulation, and biogenesis of sense overlapping transcripts associated with IS200/IS605. We hereby present the comparative, transcriptomics-based processing site maps with a companion browsing interface.
Collapse
Affiliation(s)
- Amr Galal Abd El-Raheem Ibrahim
- Department of Computation and Mathematics, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil; (A.G.A.E.-R.I.); (R.Z.N.V.)
| | - Ricardo Z. N. Vêncio
- Department of Computation and Mathematics, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil; (A.G.A.E.-R.I.); (R.Z.N.V.)
| | - Alan P. R. Lorenzetti
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil;
| | - Tie Koide
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil;
- Correspondence: ; Tel.: +55-16-3315-3107
| |
Collapse
|
11
|
Märkle P, Maier LK, Maaß S, Hirschfeld C, Bartel J, Becher D, Voß B, Marchfelder A. A Small RNA Is Linking CRISPR-Cas and Zinc Transport. Front Mol Biosci 2021; 8:640440. [PMID: 34055875 PMCID: PMC8155600 DOI: 10.3389/fmolb.2021.640440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
The function and mode of action of small regulatory RNAs is currently still understudied in archaea. In the halophilic archaeon Haloferax volcanii, a plethora of sRNAs have been identified; however, in-depth functional analysis is missing for most of them. We selected a small RNA (s479) from Haloferax volcanii for detailed characterization. The sRNA gene is encoded between a CRISPR RNA locus and the Cas protein gene cluster, and the s479 deletion strain is viable and was characterized in detail. Transcriptome studies of wild-type Haloferax cells and the deletion mutant revealed upregulation of six genes in the deletion strain, showing that this sRNA has a clearly defined function. Three of the six upregulated genes encode potential zinc transporter proteins (ZnuA1, ZnuB1, and ZnuC1) suggesting the involvement of s479 in the regulation of zinc transport. Upregulation of these genes in the deletion strain was confirmed by northern blot and proteome analyses. Furthermore, electrophoretic mobility shift assays demonstrate a direct interaction of s479 with the target znuC1 mRNA. Proteome comparison of wild-type and deletion strains further expanded the regulon of s479 deeply rooting this sRNA within the metabolism of H. volcanii especially the regulation of transporter abundance. Interestingly, s479 is not only encoded next to CRISPR-cas genes, but the mature s479 contains a crRNA-like 5' handle, and experiments with Cas protein deletion strains indicate maturation by Cas6 and interaction with Cas proteins. Together, this might suggest that the CRISPR-Cas system is involved in s479 function.
Collapse
Affiliation(s)
- Pascal Märkle
- Department of Biology II, Ulm University, Ulm, Germany
| | | | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Claudia Hirschfeld
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jürgen Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Björn Voß
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
12
|
Weixlbaumer A, Grünberger F, Werner F, Grohmann D. Coupling of Transcription and Translation in Archaea: Cues From the Bacterial World. Front Microbiol 2021; 12:661827. [PMID: 33995325 PMCID: PMC8116511 DOI: 10.3389/fmicb.2021.661827] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/30/2021] [Indexed: 01/07/2023] Open
Abstract
The lack of a nucleus is the defining cellular feature of bacteria and archaea. Consequently, transcription and translation are occurring in the same compartment, proceed simultaneously and likely in a coupled fashion. Recent cryo-electron microscopy (cryo-EM) and tomography data, also combined with crosslinking-mass spectrometry experiments, have uncovered detailed structural features of the coupling between a transcribing bacterial RNA polymerase (RNAP) and the trailing translating ribosome in Escherichia coli and Mycoplasma pneumoniae. Formation of this supercomplex, called expressome, is mediated by physical interactions between the RNAP-bound transcription elongation factors NusG and/or NusA and the ribosomal proteins including uS10. Based on the structural conservation of the RNAP core enzyme, the ribosome, and the universally conserved elongation factors Spt5 (NusG) and NusA, we discuss requirements and functional implications of transcription-translation coupling in archaea. We furthermore consider additional RNA-mediated and co-transcriptional processes that potentially influence expressome formation in archaea.
Collapse
Affiliation(s)
- Albert Weixlbaumer
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Université de Strasbourg, Strasbourg, France
- CNRS UMR7104, Illkirch, France
- INSERM U1258, Illkirch, France
| | - Felix Grünberger
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
| | - Finn Werner
- RNAP Lab, Division of Biosciences, Institute for Structural and Molecular Biology, London, United Kingdom
| | - Dina Grohmann
- Institute of Microbiology and Archaea Centre, University of Regensburg, Regensburg, Germany
- Regensburg Center for Biochemistry, University of Regensburg, Regensburg, Germany
| |
Collapse
|
13
|
Ramos TAR, Galindo NRO, Arias-Carrasco R, da Silva CF, Maracaja-Coutinho V, do Rêgo TG. RNAmining: A machine learning stand-alone and web server tool for RNA coding potential prediction. F1000Res 2021; 10:323. [PMID: 34164114 PMCID: PMC8201426 DOI: 10.12688/f1000research.52350.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are important players in the cellular regulation of organisms from different kingdoms. One of the key steps in ncRNAs research is the ability to distinguish coding/non-coding sequences. We applied seven machine learning algorithms (Naive Bayes, Support Vector Machine, K-Nearest Neighbors, Random Forest, Extreme Gradient Boosting, Neural Networks and Deep Learning) through model organisms from different evolutionary branches to create a stand-alone and web server tool (RNAmining) to distinguish coding and non-coding sequences. Firstly, we used coding/non-coding sequences downloaded from Ensembl (April 14th, 2020). Then, coding/non-coding sequences were balanced, had their trinucleotides count analysed (64 features) and we performed a normalization by the sequence length, resulting in total of 180 models. The machine learning algorithms validations were performed using 10-fold cross-validation and we selected the algorithm with the best results (eXtreme Gradient Boosting) to implement at RNAmining. Best F1-scores ranged from 97.56% to 99.57% depending on the organism. Moreover, we produced a benchmarking with other tools already in literature (CPAT, CPC2, RNAcon and TransDecoder) and our results outperformed them. Both stand-alone and web server versions of RNAmining are freely available at https://rnamining.integrativebioinformatics.me/.
Collapse
Affiliation(s)
- Thaís A R Ramos
- Programa de Pós-Graduação em Bioinformática, Bioinformatics Multidisciplinary Environment (BioME), Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba, João Pessoa, Brazil.,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Nilbson R O Galindo
- Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Raúl Arias-Carrasco
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Cecília F da Silva
- Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Vinicius Maracaja-Coutinho
- Programa de Pós-Graduação em Bioinformática, Bioinformatics Multidisciplinary Environment (BioME), Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.,Instituto Vandique, João Pessoa, Brazil
| | - Thaís G do Rêgo
- Programa de Pós-Graduação em Bioinformática, Bioinformatics Multidisciplinary Environment (BioME), Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba, João Pessoa, Brazil
| |
Collapse
|
14
|
Role of Non-coding RNAs in Fungal Pathogenesis and Antifungal Drug Responses. CURRENT CLINICAL MICROBIOLOGY REPORTS 2020. [DOI: 10.1007/s40588-020-00151-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Purpose of Review
Non-coding RNAs (ncRNAs), including regulatory small RNAs (sRNAs) and long non-coding RNAs (lncRNAs), constitute a significant part of eukaryotic genomes; however, their roles in fungi are just starting to emerge. ncRNAs have been shown to regulate gene expression in response to varying environmental conditions (like stress) and response to chemicals, including antifungal drugs. In this review, I highlighted recent studies focusing on the functional roles of ncRNAs in pathogenic fungi.
Recent Findings
Emerging evidence suggests sRNAs (small RNAs) and lncRNAs (long non-coding RNAs) play an important role in fungal pathogenesis and antifungal drug response. Their roles include posttranscriptional gene silencing, histone modification, and chromatin remodeling. Fungal pathogens utilize RNA interference (RNAi) mechanisms to regulate pathogenesis-related genes and can also transfer sRNAs inside the host to suppress host immunity genes to increase virulence. Hosts can also transfer sRNAs to induce RNAi in fungal pathogens to reduce virulence. Additionally, sRNAs and lncRNAs also regulate gene expression in response to antifungal drugs increasing resistance (and possibly tolerance) to drugs.
Summary
Herein, I discuss what is known about ncRNAs in fungal pathogenesis and antifungal drug responses. Advancements in genomic technologies will help identify the ncRNA repertoire in fungal pathogens, and functional studies will elucidate their mechanisms. This will advance our understanding of host-fungal interactions and potentially help develop better treatment strategies.
Collapse
|
15
|
Lin Z, Ni X, Dai S, Chen H, Chen J, Wu B, Ao J, Shi K, Sun H. Screening and verification of long noncoding RNA promoter methylation sites in hepatocellular carcinoma. Cancer Cell Int 2020; 20:311. [PMID: 32684848 PMCID: PMC7362420 DOI: 10.1186/s12935-020-01407-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Background Long noncoding ribonucleic acid (lncRNA) promoter methylation is closely related to the occurrence and development of hepatocellular carcinoma (HCC). Thus, we aim to screen and verify the lncRNA promoter methylation sites associated with overall survival (OS), vascular invasion, pathological grade, and clinical stage in HCC. Methods Methylation-related data including clinical characteristic, transcriptome, methylation, and messenger RNA (mRNA) expression were taken from the Cancer Genome Atlas (TCGA) database. The OS, vascular invasion, pathological grade, and clinical stage-related lncRNA promoter methylation models were developed by the least absolute shrinkage and selection operator (LASSO) algorithm based on the lncRNA promoter methylation sites screened via R software. The Kaplan-Meier analysis, the area under the receiver operating characteristic (ROC) curve (AUC), the calibration curve (C-index) were performed to evaluate the performance of these models. Finally, the methylation-specific polymerase chain reaction (MS-PCR) was performed to verify the accuracy of these models based on 146 HCC tissues from our hospital. Results A total of 10 methylation sites were included in the OS-related lncRNA promoter methylation model that could effectively divide HCC patients into high-risk and low-risk groups (P < 0.0001) via survival analysis. COX univariable and multivariable regression analysis found that the OS-related model (P < 0.001, 95% CI 1.378-2.942) and T stage (P < 0.001, 95% CI 1.490-3.418) were independent risk factors affecting OS in HCC patients. The vascular invasion-related model contained 8 methylation sites with its AUC value of 0.657; the pathological grade-related model contained 22 methylation sites with its AUC value of 0.797; the clinical stage-related model contained 13 methylation sites with its AUC of 0.724. Target genes corresponded to vascular invasion-related lncRNA promoter methylation sites were involved in many kinds of biological processes in HCC such as PI3K-Akt signaling pathway. The accuracy of the vascular invasion-related model was consistent with our bioinformatics conclusion after being verified via MS-PCR. Conclusion The lncRNA promoter methylation sites are closely correlated with the process of HCC and can be utilized to improve the therapy and prognosis of HCC.
Collapse
Affiliation(s)
- Zhuo Lin
- Department of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Xiaofeng Ni
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Shengjie Dai
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Hao Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Jianhui Chen
- Department of Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China.,Chinese Academy of Sciences Shanghai Branch, Shanghai, People's Republic of China
| | - Boda Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Jianyang Ao
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Keqing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China.,Laboratory of Precision Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| | - Hongwei Sun
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China.,Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province People's Republic of China
| |
Collapse
|
16
|
Quendera AP, Seixas AF, Dos Santos RF, Santos I, Silva JPN, Arraiano CM, Andrade JM. RNA-Binding Proteins Driving the Regulatory Activity of Small Non-coding RNAs in Bacteria. Front Mol Biosci 2020; 7:78. [PMID: 32478092 PMCID: PMC7237705 DOI: 10.3389/fmolb.2020.00078] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/06/2020] [Indexed: 12/20/2022] Open
Abstract
Small non-coding RNAs (sRNAs) are critical post-transcriptional regulators of gene expression. Distinct RNA-binding proteins (RBPs) influence the processing, stability and activity of bacterial small RNAs. The vast majority of bacterial sRNAs interact with mRNA targets, affecting mRNA stability and/or its translation rate. The assistance of RNA-binding proteins facilitates and brings accuracy to sRNA-mRNA basepairing and the RNA chaperones Hfq and ProQ are now recognized as the most prominent RNA matchmakers in bacteria. These RBPs exhibit distinct high affinity RNA-binding surfaces, promoting RNA strand interaction between a trans-encoding sRNA and its mRNA target. Nevertheless, some organisms lack ProQ and/or Hfq homologs, suggesting the existence of other RBPs involved in sRNA function. Along this line of thought, the global regulator CsrA was recently shown to facilitate the access of an sRNA to its target mRNA and may represent an additional factor involved in sRNA function. Ribonucleases (RNases) can be considered a class of RNA-binding proteins with nucleolytic activity that are responsible for RNA maturation and/or degradation. Presently RNase E, RNase III, and PNPase appear to be the main players not only in sRNA turnover but also in sRNA processing. Here we review the current knowledge on the most important bacterial RNA-binding proteins affecting sRNA activity and sRNA-mediated networks.
Collapse
Affiliation(s)
- Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - João P N Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
17
|
Morgado S, Antunes D, Caffarena E, Vicente AC. The rare lncRNA GOLLD is widespread and structurally conserved among Mycobacterium tRNA arrays. RNA Biol 2020; 17:1001-1008. [PMID: 32275844 DOI: 10.1080/15476286.2020.1748922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Noncoding RNA (ncRNA) genes produce transcripts involved in a wide range of functions, including catalytic and regulatory functions. Besides, some transcripts have highly complex structures that may impact their activities. Among the largest bacterial ncRNAs, there is the rare GOLLD RNA, which is associated with tRNA genes and supposed to be chromosome- and phage-encoded in specialized groups of bacteria, including those from Lactobacillales and Actinomycetales orders. The only GOLLD structure was inferred from a variety of sequences, including many marine metagenomes. To explore GOLLD RNA in bacterial genomes, we mined the GOLLD gene in thousands of Mycobacterium and virus genomes using Infernal software. We identified this gene in 350 mycobacteria, including megaplasmids, and 39 bacteriophages, mainly in the genomic context of tRNA arrays. Mycobacterium GOLLD genes presented a high diversity and were distributed in three phylogenetic groups: (i) Mycobacterium exclusive; (ii) Mycobacterium and mycobacteriophages; and (iii) mycobacteriophage exclusive. We also determined the GOLLD secondary structure of each group using R2 R software based on GOLLD alignments generated by Infernal software. All GOLLD groups displayed a 3' half conserved structure, including utter E-loops pseudoknots substructures, also shared by non-Mycobacterium GOLLD while the 5' half motif was different among the groups. Here, we showed that the lncRNA GOLLD is widespread in Mycobacterium within tRNA arrays and corroborated the previously predicted GOLLD secondary structure.
Collapse
Affiliation(s)
- Sergio Morgado
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC - FIOCRUZ) , Rio de Janeiro, Brazil
| | - Deborah Antunes
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute (IOC - FIOCRUZ) , Rio de Janeiro, Brazil
| | - Ernesto Caffarena
- Computational Biophysics and Molecular Modeling Group, Scientific Computing Program (PROCC - FIOCRUZ) , Rio de Janeiro, Brazil
| | - Ana Carolina Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC - FIOCRUZ) , Rio de Janeiro, Brazil
| |
Collapse
|
18
|
New proposal of nitrogen metabolism regulation by small RNAs in the extreme halophilic archaeon Haloferax mediterranei. Mol Genet Genomics 2020; 295:775-785. [DOI: 10.1007/s00438-020-01659-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022]
|
19
|
Ni X, Lin Z, Dai S, Chen H, Chen J, Zheng C, Wu B, Ao J, Shi K, Sun H. Screening and verification of microRNA promoter methylation sites in hepatocellular carcinoma. J Cell Biochem 2020; 121:3626-3641. [PMID: 32065423 DOI: 10.1002/jcb.29656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
The promoter methylation mode of microribonucleic acid (miRNA) plays a crucial role in the process of hepatocellular carcinoma (HCC). Therefore, the primary purpose of this study was to screen and verify the miRNA methylation sites associated with the overall survival (OS) and clinical characteristics of HCC patients. Methylation-related data were from the Cancer Genome Atlas (TCGA). R software was utilized to screen the methylation sites. The least absolute shrinkage and selection operator algorithm was utilized to develop the miRNA promoter methylation models. Then, methylation-specific polymerase chain reaction was performed with 146 HCC tissues to verify the accuracy of the vascular infiltration-related model. Additionally, we verified the functions of vascular infiltration-related miRNA by utilizing cells transfected with miR-199a-3p mimic. The model for predicting OS of HCC patients contained eight methylation sites. The Kaplan-Meier analysis suggested that the model could divide HCC patients into high- and low-risk groups (P < .0001). COX regression analysis suggested that the model (P < .001; 95% CI, 1.264-2.709) and T category (P < .001; 95% CI, 1.472-3.119) were independent risk factors for affecting OS of HCC patients. The model for predicting vascular infiltration, pathological grade, and clinical stage contained 7, 10, and 9 methylation sites respectively, with their area under the receiver operating characteristic curve (AUC) values 0.667, 0.745, and 0.725, respectively. The functional analysis suggested that miRNA methylation is involved in various biological processes such as WNT, MAPK, and mTOR signaling pathways. The accuracy of the vascular infiltration-related model was consistent with our previous bioinformatics assay. And upregulation of miR-199a-3p decreased migration and invasion abilities. The screened miRNA promoter methylation sites can be served as biomarkers for judging OS, vascular infiltration, pathology grade, and clinical stage. It can also provide new targets for improving the treatment and prognosis of HCC patients.
Collapse
Affiliation(s)
- Xiaofeng Ni
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuo Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Wenzhou Key Laboratory of Hepatology, Wenzhou, Zhejiang, China.,Hepatology Institute of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengjie Dai
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hao Chen
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianhui Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Chinese Academy of Sciences Shanghai Branch, Shanghai, China
| | - Chenlei Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Boda Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianyang Ao
- Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keqing Shi
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Laboratory of Precision Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongwei Sun
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
20
|
Abstract
This study systematically evaluated the global patterns of microbial antisense expression across various environments and provides a bird’s-eye view of general patterns observed across data sets, which can provide guidelines in our understanding of antisense expression as well as interpretation of metatranscriptomic data in general. This analysis highlights that in some environments, antisense expression from microbial communities can dominate over regular gene expression. We explored some potential drivers of antisense transcription, but more importantly, this study serves as a starting point, highlighting topics for future research and providing guidelines to include antisense expression in generic bioinformatic pipelines for metatranscriptomic data. High-throughput sequencing has allowed unprecedented insight into the composition and function of complex microbial communities. With metatranscriptomics, it is possible to interrogate the transcriptomes of multiple organisms simultaneously to get an overview of the gene expression of the entire community. Studies have successfully used metatranscriptomics to identify and describe relationships between gene expression levels and community characteristics. However, metatranscriptomic data sets contain a rich suite of additional information that is just beginning to be explored. Here, we focus on antisense expression in metatranscriptomics, discuss the different computational strategies for handling it, and highlight the strengths but also potentially detrimental effects on downstream analysis and interpretation. We also analyzed the antisense transcriptomes of multiple genomes and metagenome-assembled genomes (MAGs) from five different data sets and found high variability in the levels of antisense transcription for individual species, which were consistent across samples. Importantly, we challenged the conceptual framework that antisense transcription is primarily the product of transcriptional noise and found mixed support, suggesting that the total observed antisense RNA in complex communities arises from the combined effect of unknown biological and technical factors. Antisense transcription can be highly informative, including technical details about data quality and novel insight into the biology of complex microbial communities. IMPORTANCE This study systematically evaluated the global patterns of microbial antisense expression across various environments and provides a bird’s-eye view of general patterns observed across data sets, which can provide guidelines in our understanding of antisense expression as well as interpretation of metatranscriptomic data in general. This analysis highlights that in some environments, antisense expression from microbial communities can dominate over regular gene expression. We explored some potential drivers of antisense transcription, but more importantly, this study serves as a starting point, highlighting topics for future research and providing guidelines to include antisense expression in generic bioinformatic pipelines for metatranscriptomic data.
Collapse
|
21
|
Gelsinger DR, Uritskiy G, Reddy R, Munn A, Farney K, DiRuggiero J. Regulatory Noncoding Small RNAs Are Diverse and Abundant in an Extremophilic Microbial Community. mSystems 2020; 5:e00584-19. [PMID: 32019831 PMCID: PMC7002113 DOI: 10.1128/msystems.00584-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023] Open
Abstract
Regulatory small RNAs (sRNAs) play large-scale and essential roles in many cellular processes across all domains of life. Microbial sRNAs have been extensively studied in model organisms, but very little is known about the dynamics of sRNA synthesis and their roles in the natural environment. In this study, we discovered hundreds of intergenic (itsRNAs) and antisense (asRNAs) sRNAs expressed in an extremophilic microbial community inhabiting halite nodules (salt rocks) in the Atacama Desert. For this, we built SnapT, a new sRNA annotation pipeline that can be applied to any microbial community. We found asRNAs with expression levels negatively correlated with that of their overlapping putative target and itsRNAs that were conserved and significantly differentially expressed between 2 sampling time points. We demonstrated that we could perform target prediction and correlate expression levels between sRNAs and predicted target mRNAs at the community level. Functions of putative mRNA targets reflected the environmental challenges members of the halite communities were subjected to, including osmotic adjustments to a major rain event and competition for nutrients.IMPORTANCE Microorganisms in the natural world are found in communities, communicating and interacting with each other; therefore, it is essential that microbial regulatory mechanisms, such as gene regulation affected by small RNAs (sRNAs), be investigated at the community level. This work demonstrates that metatranscriptomic field experiments can link environmental variation with changes in RNA pools and have the potential to provide new insights into environmental sensing and responses in natural microbial communities through noncoding RNA-mediated gene regulation.
Collapse
Affiliation(s)
- Diego R Gelsinger
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Gherman Uritskiy
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Rahul Reddy
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam Munn
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Katie Farney
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Jocelyne DiRuggiero
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
22
|
A Novel Noncoding RNA dsr11 Involved in Heat Stress Tolerance in Deinococcus radiodurans. Biomolecules 2019; 10:biom10010022. [PMID: 31877996 PMCID: PMC7022480 DOI: 10.3390/biom10010022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 12/30/2022] Open
Abstract
Deinococcus radiodurans is an extremely resistant bacteria that has evolved masterful strategies to enable survival under various environmental stress conditions. Heat stress is a major environmental stress factor that can cause denaturation of proteins, membrane disruption, and oxidative stress. Previous studies have examined the mechanisms of the heat stress response by analyzing changes in protein levels; however, little is known about the role of small noncoding RNAs (ncRNAs), which are known to play important regulatory functions in bacteria during various environmental stress response. The ncRNA dsr11 of D. radiodurans was previously identified by RNA-seq and Northern blot. In this study, we showed that the transcription level of dsr11 was up-regulated 4.2-fold under heat stress by qRT-PCR analysis. Heat tolerance assay showed that deleting dsr11 significantly inhibited the viability under high temperature conditions. To assess the influence of dsr11 on the D. radiodurans transcriptome, 157 genes were found differentially expressed in the knock-out mutant by RNA-seq experiment. Combining RNA-seq and in silico analysis, we found that trmE (tRNA modification GTPase) and dr_0651 (arginase) were likely to be the direct targets of dsr11. Further microscale thermophoresis results demonstrated that dsr11 can directly bind to the mRNA of trmE and dr_0651. Our results indicated that dsr11 can enhance the tolerance to heat stress of D. radiodurans by binding to trmE and dr_0651 mRNA. Overall, these results extend our understanding of ncRNA regulation and provide new insights into the heat stress response in D. radiodurans.
Collapse
|
23
|
van den Esker MH, Koets AP. Application of Transcriptomics to Enhance Early Diagnostics of Mycobacterial Infections, with an Emphasis on Mycobacterium avium ssp. paratuberculosis. Vet Sci 2019; 6:vetsci6030059. [PMID: 31247942 PMCID: PMC6789504 DOI: 10.3390/vetsci6030059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
Mycobacteria cause a wide variety of disease in human and animals. Species that infect ruminants include M. bovis and M. avium ssp. paratuberculosis (MAP). MAP is the causative agent of Johne’s disease in ruminants, which is a chronic granulomatous enteric infection that leads to severe economic losses worldwide. Characteristic of MAP infection is the long, latent phase in which intermittent shedding can take place, while diagnostic tests are unable to reliably detect an infection in this stage. This leads to unnoticed dissemination within herds and the presence of many undetected, silent carriers, which makes the eradication of Johne’s disease difficult. To improve the control of MAP infection, research is aimed at improving early diagnosis. Transcriptomic approaches can be applied to characterize host-pathogen interactions during infection, and to develop novel biomarkers using transcriptional profiles. Studies have focused on the identification of specific RNAs that are expressed in different infection stages, which will assist in the development and clinical implementation of early diagnostic tests.
Collapse
Affiliation(s)
- Marielle H van den Esker
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands
| | - Ad P Koets
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands.
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
24
|
Kliemt J, Jaschinski K, Soppa J. A Haloarchaeal Small Regulatory RNA (sRNA) Is Essential for Rapid Adaptation to Phosphate Starvation Conditions. Front Microbiol 2019; 10:1219. [PMID: 31231327 PMCID: PMC6560208 DOI: 10.3389/fmicb.2019.01219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/15/2019] [Indexed: 11/26/2022] Open
Abstract
The haloarchaeon Haloferax volcanii contains nearly 2800 small non-coding RNAs (sRNAs). One intergenic sRNA, sRNA132, was chosen for a detailed characterization. A deletion mutant had a growth defect and thus underscored the importance of sRNA132. A microarray analysis identified the transcript of an operon for a phosphate-specific ABC transporter as a putative target of sRNA132. Both the sRNA132 and the operon transcript accumulated under low phosphate concentrations, indicating a positive regulatory role of sRNA132. A kinetic analysis revealed that sRNA132 is essential shortly after the onset of phosphate starvation, while other regulatory processes take over after several hours. Comparison of the transcriptomes of wild-type and the sRNA132 gene deletion mutant 30 min after the onset of phosphate starvation revealed that sRNA132 controls a regulon of about 40 genes. Remarkably, the regulon included a second operon for a phosphate-specific ABC transporter, which also depended on sRNA132 for rapid induction in the absence of phosphate. Competitive growth experiments of the wild-type and ABC transporter operon deletion mutants underscored the importance of both transporters for growth at low phosphate concentrations. Northern blot analyses of four additional members of the sRNA132 regulon verified that all four transcripts depended on sRNA132 for rapid regulation after the onset of phosphate starvation. Importantly, this is the first example for the transient importance of a sRNA for any archaeal and bacterial species. In addition, this study unraveled the first sRNA regulon for haloarchaea.
Collapse
Affiliation(s)
- Jana Kliemt
- Biocentre, Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Katharina Jaschinski
- Biocentre, Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Jörg Soppa
- Biocentre, Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
25
|
Characterization of the transcriptome of Haloferax volcanii, grown under four different conditions, with mixed RNA-Seq. PLoS One 2019; 14:e0215986. [PMID: 31039177 PMCID: PMC6490895 DOI: 10.1371/journal.pone.0215986] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Haloferax volcanii is a well-established model species for haloarchaea. Small scale RNomics and bioinformatics predictions were used to identify small non-coding RNAs (sRNAs), and deletion mutants revealed that sRNAs have important regulatory functions. A recent dRNA-Seq study was used to characterize the primary transcriptome. Unexpectedly, it was revealed that, under optimal conditions, H. volcanii contains more non-coding sRNAs than protein-encoding mRNAs. However, the dRNA-Seq approach did not contain any length information. Therefore, a mixed RNA-Seq approach was used to determine transcript length and to identify additional transcripts, which are not present under optimal conditions. In total, 50 million paired end reads of 150 nt length were obtained. 1861 protein-coding RNAs (cdRNAs) were detected, which encoded 3092 proteins. This nearly doubled the coverage of cdRNAs, compared to the previous dRNA-Seq study. About 2/3 of the cdRNAs were monocistronic, and 1/3 covered more than one gene. In addition, 1635 non-coding sRNAs were identified. The highest fraction of non-coding RNAs were cis antisense RNAs (asRNAs). Analysis of the length distribution revealed that sRNAs have a median length of about 150 nt. Based on the RNA-Seq and dRNA-Seq results, genes were chosen to exemplify characteristics of the H. volcanii transcriptome by Northern blot analyses, e.g. 1) the transcript patterns of gene clusters can be straightforward, but also very complex, 2) many transcripts differ in expression level under the four analyzed conditions, 3) some genes are transcribed into RNA isoforms of different length, which can be differentially regulated, 4) transcripts with very long 5'-UTRs and with very long 3'-UTRs exist, and 5) about 30% of all cdRNAs have overlapping 3'-ends, which indicates, together with the asRNAs, that H. volcanii makes ample use of sense-antisense interactions. Taken together, this RNA-Seq study, together with a previous dRNA-Seq study, enabled an unprecedented view on the H. volcanii transcriptome.
Collapse
|
26
|
The Primary Antisense Transcriptome of Halobacterium salinarum NRC-1. Genes (Basel) 2019; 10:genes10040280. [PMID: 30959844 PMCID: PMC6523106 DOI: 10.3390/genes10040280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
Antisense RNAs (asRNAs) are present in diverse organisms and play important roles in gene regulation. In this work, we mapped the primary antisense transcriptome in the halophilic archaeon Halobacterium salinarum NRC-1. By reanalyzing publicly available data, we mapped antisense transcription start sites (aTSSs) and inferred the probable 3′ ends of these transcripts. We analyzed the resulting asRNAs according to the size, location, function of genes on the opposite strand, expression levels and conservation. We show that at least 21% of the genes contain asRNAs in H. salinarum. Most of these asRNAs are expressed at low levels. They are located antisense to genes related to distinctive characteristics of H. salinarum, such as bacteriorhodopsin, gas vesicles, transposases and other important biological processes such as translation. We provide evidence to support asRNAs in type II toxin–antitoxin systems in archaea. We also analyzed public Ribosome profiling (Ribo-seq) data and found that ~10% of the asRNAs are ribosome-associated non-coding RNAs (rancRNAs), with asRNAs from transposases overrepresented. Using a comparative transcriptomics approach, we found that ~19% of the asRNAs annotated in H. salinarum belong to genes with an ortholog in Haloferax volcanii, in which an aTSS could be identified with positional equivalence. This shows that most asRNAs are not conserved between these halophilic archaea.
Collapse
|
27
|
A journey through the evolutionary diversification of archaeal Lsm and Hfq proteins. Emerg Top Life Sci 2018; 2:647-657. [PMID: 33525833 DOI: 10.1042/etls20180034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 11/17/2022]
Abstract
Sm-like (Lsm) proteins are found in all three domains of life. They are crucially involved in the RNA metabolism of prokaryotic organisms. To exert their function, they assemble into hexa- or heptameric rings and bind RNA via a conserved binding pocket for uridine stretches in the inner pore of the ring. Despite the conserved secondary structure of Lsm proteins, there are several features that lead to a structural diversification of this protein family that mediates their participation in a variety of processes related to RNA metabolism. Until recently, the cellular function of archaeal Sm-like proteins was not well understood. In this review, we discuss structural features of Lsm proteins with a strong focus on archaeal variants, reflect on the evolutionary development of archaeal Lsm proteins and present recent insights into their biological function.
Collapse
|
28
|
Abstract
Small regulatory RNAs play an important role in the adaptation to changing conditions. Here, we describe a differentially expressed small regulatory RNA (sRNA) that affects various cellular processes in the plant pathogen Agrobacterium tumefaciens Using a combination of bioinformatic predictions and comparative proteomics, we identified nine targets, most of which are positively regulated by the sRNA. According to these targets, we named the sRNA PmaR for peptidoglycan biosynthesis, motility, and ampicillin resistance regulator. Agrobacterium spp. are long known to be naturally resistant to high ampicillin concentrations, and we can now explain this phenotype by the positive PmaR-mediated regulation of the beta-lactamase gene ampC Structure probing revealed a spoon-like structure of the sRNA, with a single-stranded loop that is engaged in target interaction in vivo and in vitro Several riboregulators have been implicated in antibiotic resistance mechanisms, such as uptake and efflux transporters, but PmaR represents the first example of an sRNA that directly controls the expression of an antibiotic resistance gene.IMPORTANCE The alphaproteobacterium Agrobacterium tumefaciens is able to infect various eudicots causing crown gall tumor formation. Based on its unique ability of interkingdom gene transfer, Agrobacterium serves as a crucial biotechnological tool for genetic manipulation of plant cells. The presence of hundreds of putative sRNAs in this organism suggests a considerable impact of riboregulation on A. tumefaciens physiology. Here, we characterized the biological function of the sRNA PmaR that controls various processes crucial for growth, motility, and virulence. Among the genes directly targeted by PmaR is ampC coding for a beta-lactamase that confers ampicillin resistance, suggesting that the sRNA is crucial for fitness in the competitive microbial composition of the rhizosphere.
Collapse
|
29
|
mRNA-specific translation regulation by a ribosome-associated ncRNA in Haloferax volcanii. Sci Rep 2018; 8:12502. [PMID: 30131517 PMCID: PMC6104027 DOI: 10.1038/s41598-018-30332-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/20/2018] [Indexed: 12/02/2022] Open
Abstract
Regulation of gene expression at the translational level allows rapid adaptation of cellular proteomes to quickly changing environmental conditions and is thus central for prokaryotic organisms. Small non-coding RNAs (sRNAs) have been reported to effectively orchestrate translation control in bacteria and archaea mainly by targeting mRNAs by partial base complementarity. Here we report an unprecedented mechanism how sRNAs are capable of modulating protein biosynthesis in the halophilic archaeon Haloferax volcanii. By analyzing the ribosome-associated ncRNAs (rancRNAs) under different stress conditions we identified an intergenic sRNA, termed rancRNA_s194, that is primarily expressed during exponential growth under all tested conditions. By interaction with the ribosome rancRNA_s194 inhibits peptide bond formation and protein synthesis in vitro but appears to target a specific mRNA in vivo. The respective knock-out strain shows a reduced lag phase in media containing xylose as sole carbon source and outcompetes the wildtype cells under these conditions. Mass spectrometry, polysome profiling and mRNA binding competition experiments suggest that rancRNA_s194 prevents the cstA mRNA from being efficiently translated by H. volcanii ribosomes. These findings enlarge the regulatory repertoire of archaeal sRNAs in modulating post-transcriptional gene expression.
Collapse
|