1
|
Okawa K, Kijima M, Ishii M, Nanako M, Yasumura Y, Sakaguchi M, Kimura M, Uehara M, Tabata E, Bauer PO, Oyama F. Hyperactivation of human acidic chitinase (Chia) for potential medical use. J Biol Chem 2024:108100. [PMID: 39706263 DOI: 10.1016/j.jbc.2024.108100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Accumulation of environmental chitin in the lungs can lead to pulmonary fibrosis, characterized by inflammatory infiltration and fibrosis in acidic chitinase (Chia)-deficient mice. Transgenic expression of Chia in these mice ameliorated the symptoms, indicating the potential of enzyme supplementation as a promising therapeutic strategy for related lung diseases. This study focuses on utilizing hyperactivated human Chia, which exhibits low activity. We achieved significant activation of human Chia by incorporating nine amino acids derived from the crab-eating monkey (Macaca fascicularis) Chia, known for its robust chitin-degrading activity. The modified human Chia retained high activity across a broad pH spectrum and exhibited enhanced thermal stability. The amino acid substitutions associated with hyperactivation of human Chia activity occurred species-specifically in monkey Chia. This discovery highlights the potential of hyperactivated Chia in treating pulmonary diseases resulting from chitin accumulation in human lungs.
Collapse
Affiliation(s)
- Kazuaki Okawa
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Masashi Kijima
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Mana Ishii
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Maeda Nanako
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Yudai Yasumura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan; School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, 192-0982, Japan
| | - Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan; Japan Society for the Promotion of Science (PD), Tokyo, 102-0083, Japan
| | - Peter O Bauer
- Bioinova a.s., Videnska 1083, Prague, 142 00, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
2
|
Uehara M, Takasaki C, Wakita S, Sugahara Y, Tabata E, Matoska V, Bauer PO, Oyama F. Crab-Eating Monkey Acidic Chitinase (CHIA) Efficiently Degrades Chitin and Chitosan under Acidic and High-Temperature Conditions. Molecules 2022; 27:409. [PMID: 35056724 PMCID: PMC8781735 DOI: 10.3390/molecules27020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/16/2022] Open
Abstract
Chitooligosaccharides, the degradation products of chitin and chitosan, possess anti-bacterial, anti-tumor, and anti-inflammatory activities. The enzymatic production of chitooligosaccharides may increase the interest in their potential biomedical or agricultural usability in terms of the safety and simplicity of the manufacturing process. Crab-eating monkey acidic chitinase (CHIA) is an enzyme with robust activity in various environments. Here, we report the efficient degradation of chitin and chitosan by monkey CHIA under acidic and high-temperature conditions. Monkey CHIA hydrolyzed α-chitin at 50 °C, producing N-acetyl-d-glucosamine (GlcNAc) dimers more efficiently than at 37 °C. Moreover, the degradation rate increased with a longer incubation time (up to 72 h) without the inactivation of the enzyme. Five substrates (α-chitin, colloidal chitin, P-chitin, block-type, and random-type chitosan substrates) were exposed to monkey CHIS at pH 2.0 or pH 5.0 at 50 °C. P-chitin and random-type chitosan appeared to be the best sources of GlcNAc dimers and broad-scale chitooligosaccharides, respectively. In addition, the pattern of the products from the block-type chitosan was different between pH conditions (pH 2.0 and pH 5.0). Thus, monkey CHIA can degrade chitin and chitosan efficiently without inactivation under high-temperature or low pH conditions. Our results show that certain chitooligosaccharides are enriched by using different substrates under different conditions. Therefore, the reaction conditions can be adjusted to obtain desired oligomers. Crab-eating monkey CHIA can potentially become an efficient tool in producing chitooligosaccharide sets for agricultural and biomedical purposes.
Collapse
Affiliation(s)
- Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
| | - Chinatsu Takasaki
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
| | - Satoshi Wakita
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
| | - Yasusato Sugahara
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
| | - Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
- Japan Society for the Promotion of Science (PD), Tokyo 102-0083, Japan
| | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, 150 00 Prague, Czech Republic; (V.M.); (P.O.B.)
| | - Peter O. Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, 150 00 Prague, Czech Republic; (V.M.); (P.O.B.)
- Bioinova JSC, Videnska 1083, 142 20 Prague, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Tokyo 192-0015, Japan; (M.U.); (C.T.); (S.W.); (Y.S.); (E.T.)
| |
Collapse
|
3
|
Tabata E, Itoigawa A, Koinuma T, Tayama H, Kashimura A, Sakaguchi M, Matoska V, Bauer PO, Oyama F. Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora. Mol Biol Evol 2021; 39:6432054. [PMID: 34897517 PMCID: PMC8789059 DOI: 10.1093/molbev/msab331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Acidic chitinase (Chia) digests the chitin of insects in the omnivorous stomach and the chitinase activity in carnivorous Chia is significantly lower than that of the omnivorous enzyme. However, mechanistic and evolutionary insights into the functional changes in Chia remain unclear. Here we show that a noninsect-based diet has caused structural and functional changes in Chia during the course of evolution in Carnivora. By creating mouse-dog chimeric Chia proteins and modifying the amino acid sequences, we revealed that F214L and A216G substitutions led to the dog enzyme activation. In 31 Carnivora, Chia was present as a pseudogene with stop codons in the open reading frame (ORF) region. Importantly, the Chia proteins of skunk, meerkat, mongoose, and hyena, which are insect-eating species, showed high chitinolytic activity. The cat Chia pseudogene product was still inactive even after ORF restoration. However, the enzyme was activated by matching the number and position of Cys residues to an active form and by introducing five meerkat Chia residues. Mutations affecting the Chia conformation and activity after pseudogenization have accumulated in the common ancestor of Felidae due to functional constraints. Evolutionary analysis indicates that Chia genes are under relaxed selective constraint in species with noninsect-based diets except for Canidae. These results suggest that there are two types of inactivating processes in Carnivora and that dietary changes affect the structure and activity of Chia.
Collapse
Affiliation(s)
- Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
- Research Fellow of Japan Society for the Promotion of Science (PD), Tokyo, Japan
| | - Akihiro Itoigawa
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Aichi, Japan
| | - Takumi Koinuma
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
| | - Hiroshi Tayama
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
| | | | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Prague, Czech Republic
| | - Peter O Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Prague, Czech Republic
- Bioinova JSC, Prague, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Tokyo, Japan
- Corresponding author: E-mail:
| |
Collapse
|
4
|
Robust chitinolytic activity of crab-eating monkey (Macaca fascicularis) acidic chitinase under a broad pH and temperature range. Sci Rep 2021; 11:15470. [PMID: 34326426 PMCID: PMC8322401 DOI: 10.1038/s41598-021-95010-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Diet of the crab-eating monkey (Macaca fascicularis) consists of both plants and animals, including chitin-containing organisms such as crabs and insects. This omnivorous monkey has a high expression of acidic chitinase (CHIA) in the stomach and here, we report on its enzymatic properties under different conditions. When we compared with Mus musculus CHIA (Mm-CHIA), Macaca fascicularis CHIA (Mf-CHIA) exhibits higher chitinolytic activity at broad pH (1.0–7.0) and temperature (30–70 ℃) range. Interestingly, at its optimum pH (5.0), Mf-CHIA showed the highest activity at 65 °C while maintaining it at robust levels between 50 and 70 °C. The degradation efficiency of Mf-CHIA was superior to Mm-CHIA toward both polymeric chitin as well as an artificial chromogenic substrate. Our results show that unique features of Mf-CHIA including its thermostability warrant the nomination of this enzyme for potential agricultural and biomedical applications.
Collapse
|
5
|
Hu C, Ma Z, Zhu J, Fan Y, Tuo B, Li T, Liu X. Physiological and pathophysiological roles of acidic mammalian chitinase (CHIA) in multiple organs. Biomed Pharmacother 2021; 138:111465. [PMID: 34311522 DOI: 10.1016/j.biopha.2021.111465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Acidic mammalian chitinase (CHIA) belongs to the 18-glycosidase family and is expressed in epithelial cells and certain immune cells (such as neutrophils and macrophages) in various organs. Under physiological conditions, as a hydrolase, CHIA can degrade chitin-containing pathogens, participate in Type 2 helper T (Th2)-mediated inflammation, and enhance innate and adaptive immunity to pathogen invasion. Under pathological conditions, such as rhinitis, ocular conjunctivitis, asthma, chronic atrophic gastritis, type 2 diabetes, and pulmonary interstitial fibrosis, CHIA expression is significantly changed. In addition, studies have shown that CHIA has an anti-apoptotic effect, promotes epithelial cell proliferation and maintains organ integrity, and these effects are not related to chitinase degradation. CHIA can also be used as a biomolecular marker in diseases such as chronic atrophic gastritis, dry eye, and acute kidney damage caused by sepsis. Analysis of the authoritative TCGA database shows that CHIA expression in gastric adenocarcinoma, liver cancer, renal clear cell carcinoma and other tumors is significantly downregulated compared with that in normal tissues, but the specific mechanism is unclear. This review is based on all surveys conducted to date and summarizes the expression patterns and functional diversity of CHIA in various organs. Understanding the physiological and pathophysiological relevance of CHIA in multiple organs opens new possibilities for disease treatment.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China
| | - Yi Fan
- Endoscopy center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Endoscopy center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China
| | - Taolang Li
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Endoscopy center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China.
| |
Collapse
|
6
|
Przysucha N, Górska K, Krenke R. Chitinases and Chitinase-Like Proteins in Obstructive Lung Diseases - Current Concepts and Potential Applications. Int J Chron Obstruct Pulmon Dis 2020; 15:885-899. [PMID: 32368034 PMCID: PMC7185641 DOI: 10.2147/copd.s236640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/10/2020] [Indexed: 01/14/2023] Open
Abstract
Chitinases, enzymes that cleave chitin’s chain to low molecular weight chitooligomers, are widely distributed in nature. Mammalian chitinases belong to the 18-glycosyl-hydrolase family and can be divided into two groups: true chitinases with enzymatic activity (AMCase and chitotriosidase) and chitinase-like proteins (CLPs) molecules which can bind to chitin or chitooligosaccharides but lack enzymatic activity (eg, YKL-40). Chitinases are thought to be part of an innate immunity against chitin-containing parasites and fungal infections. Both groups of these hydrolases are lately evaluated also as chemical mediators or biomarkers involved in airway inflammation and fibrosis. The aim of this article is to present the current knowledge on the potential role of human chitinases and CLPs in the pathogenesis, diagnosis, and course of obstructive lung diseases. We also assessed the potential role of chitinase and CLPs inhibitors as therapeutic targets in chronic obstructive pulmonary disease and asthma.
Collapse
Affiliation(s)
- Natalia Przysucha
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Górska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Tabata E, Kashimura A, Uehara M, Wakita S, Sakaguchi M, Sugahara Y, Yurimoto T, Sasaki E, Matoska V, Bauer PO, Oyama F. High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix jacchus), an insectivorous nonhuman primate. Sci Rep 2019; 9:159. [PMID: 30655565 PMCID: PMC6336882 DOI: 10.1038/s41598-018-36477-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022] Open
Abstract
Chitin is a polymer of N-acetyl-D-glucosamine (GlcNAc) and a main constituent of insects' exoskeleton. Insects are rich in protein with high energy conversion efficiency. Recently, we have reported that acidic chitinases (Chia) act as digestive enzymes in mouse, pig and chicken (omnivorous) but not in dog (carnivorous) and bovine (herbivorous), indicating that feeding behavior affects Chia expression levels, and determines chitin digestibility in the particular animals. Common marmoset (Callithrix jacchus) belongs to New World monkey family and provides a potential bridge between mouse models and human diseases. Common marmoset is an insectivorous nonhuman primate with unknown expression levels and enzymatic functions of the Chia homologue, CHIA. Here, we report that common marmoset highly expresses pepsin-, trypsin- and chymotrypsin-resistant CHIA in the stomach. We show that CHIA is most active at pH 2.0 and degrades chitin and mealworm shells into GlcNAc dimers under gastrointestinal conditions. Although common marmoset and crab-eating monkey (Old World monkey) have two CHIA genes in their genomes, they primarily express one gene in the stomach. Thus, this study is the first to investigate expression levels and enzymatic functions of CHIA in a New World primate, contributing to the understanding of dietary adaptation and digestion in this taxon.
Collapse
Affiliation(s)
- Eri Tabata
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan.,Research Fellow of Japan Society for the Promotion of Science (DC1), Koujimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Akinori Kashimura
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Maiko Uehara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Satoshi Wakita
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Yasusato Sugahara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan
| | - Terumi Yurimoto
- Central Institute for Experimental Animals, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan
| | - Vaclav Matoska
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague, 150 00, Czech Republic
| | - Peter O Bauer
- Laboratory of Molecular Diagnostics, Department of Clinical Biochemistry, Hematology and Immunology, Homolka Hospital, Roentgenova 37/2, Prague, 150 00, Czech Republic.,Bioinova Ltd., Videnska 1083, Prague, 142 20, Czech Republic
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|