1
|
Stonoha-Arther C, Panke-Buisse K, Duff AJ, Molodchenko A, Casler MD. Rhizosphere microbial community structure in high-producing, low-input switchgrass families. PLoS One 2024; 19:e0308753. [PMID: 39361607 PMCID: PMC11449334 DOI: 10.1371/journal.pone.0308753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/30/2024] [Indexed: 10/05/2024] Open
Abstract
Switchgrass (Panicum virgatum L.) is a native, low-input North American perennial crop primarily grown for bioenergy, livestock forage, and industrial fiber. To achieve no-input switchgrass production that meets biomass needs, several switchgrass genotypes have been identified that have a low or negative response to nitrogen fertilizer, i.e., the biomass accumulation with added nitrogen is less than or equal to that when grown without nitrogen. In order to improve the viability of low-input switchgrass production, a more detailed understanding of the biogeochemical mechanisms active in these select genotypes is needed. 16S and ITS amplicon sequencing and qPCR of key functional genes were applied to switchgrass rhizospheres to elucidate microbial community structure in high-producing, no-input switchgrass families. Rhizosphere microbial community structure differed strongly between sites, and nitrogen responsiveness.
Collapse
Affiliation(s)
| | - Kevin Panke-Buisse
- USDA-ARS US Dairy Forage Research Center, Madison, WI, United States of America
| | - Alison J Duff
- USDA-ARS US Dairy Forage Research Center, Madison, WI, United States of America
| | - Andrew Molodchenko
- USDA-ARS US Dairy Forage Research Center, Madison, WI, United States of America
| | - Michael D Casler
- USDA-ARS US Dairy Forage Research Center, Madison, WI, United States of America
| |
Collapse
|
2
|
Rivera Ortuña FN, Guevara-Luna J, Yan J, Lopez Amezcua E, Arroyo-Herrera I, Li Y, Vásquez-Murrieta MS, Rojas Arellano D, Wang ET. Rhizobium hidalgonense and Rhizobium redzepovicii as faba bean (Vicia faba L.) microsymbionts in Mexican soils. Arch Microbiol 2024; 206:281. [PMID: 38805057 DOI: 10.1007/s00203-024-03989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
As a legume crop widely cultured in the world, faba bean (Vicia faba L.) forms root nodules with diverse Rhizobium species in different regions. However, the symbionts associated with this plant in Mexico have not been studied. To investigate the diversity and species/symbiovar affiliations of rhizobia associated with faba bean in Mexico, rhizobia were isolated from this plant grown in two Mexican sites in the present study. Based upon the analysis of recA gene phylogeny, two genotypes were distinguished among a total of 35 isolates, and they were identified as Rhizobium hidalgonense and Rhizobium redzepovicii, respectively, by the whole genomic sequence analysis. Both the species harbored identical nod gene cluster and the same phylogenetic positions of nodC and nifH. So, all of them were identified into the symbiovar viciae. As a minor group, R. hidalgonense was only isolated from slightly acid soil and R. redzepovicii was the dominant group in both the acid and neutral soils. In addition, several genes related to resistance to metals (zinc, copper etc.) and metalloids (arsenic) were detected in genomes of the reference isolates, which might offer them some adaptation benefits. As conclusion, the community composition of faba bean rhizobia in Mexico was different from those reported in other regions. Furthermore, our study identified sv. viciae as the second symbiovar in the species R. redzepovicii. These results added novel evidence about the co-evolution, diversification and biogeographic patterns of rhizobia in association with their host legumes in distinct geographic regions.
Collapse
Affiliation(s)
- Flor N Rivera Ortuña
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de Mexico, México
| | - Joseph Guevara-Luna
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de Mexico, México
| | - Jun Yan
- National Observation Station of Hailun Agro-Ecology System, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Eloisa Lopez Amezcua
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de Mexico, México
| | - Ivan Arroyo-Herrera
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de Mexico, México
| | - Yan Li
- College of Life Science, Yantai University, Shandong Province, Yantai City, 264005, China
| | - Maria Soledad Vásquez-Murrieta
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de Mexico, México
| | - Danae Rojas Arellano
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de Mexico, México
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de Mexico, México.
| |
Collapse
|
3
|
Porras-Dominguez J, Lothier J, Limami AM, Tcherkez G. d-amino acids metabolism reflects the evolutionary origin of higher plants and their adaptation to the environment. PLANT, CELL & ENVIRONMENT 2024; 47:1503-1512. [PMID: 38251436 DOI: 10.1111/pce.14826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024]
Abstract
d-amino acids are the d stereoisomers of the common l-amino acids found in proteins. Over the past two decades, the occurrence of d-amino acids in plants has been reported and circumstantial evidence for a role in various processes, including interaction with soil microorganisms or interference with cellular signalling, has been provided. However, examples are not numerous and d-amino acids can also be detrimental, some of them inhibiting growth and development. Thus, the persistence of d-amino acid metabolism in plants is rather surprising, and the evolutionary origins of d-amino acid metabolism are currently unclear. Systemic analysis of sequences associated with d-amino acid metabolism enzymes shows that they are not simply inherited from cyanobacterial metabolism. In fact, the history of plant d-amino acid metabolism enzymes likely involves multiple steps, cellular compartments, gene transfers and losses. Regardless of evolutionary steps, enzymes of d-amino acid metabolism, such as d-amino acid transferases or racemases, have been retained by higher plants and have not simply been eliminated, so it is likely that they fulfil important metabolic roles such as serine, folate or plastid peptidoglycan metabolism. We suggest that d-amino acid metabolism may have been critical to support metabolic functions required during the evolution of land plants.
Collapse
Affiliation(s)
- Jaime Porras-Dominguez
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, Beaucouzé, France
| | - Jérémy Lothier
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, Beaucouzé, France
| | - Anis M Limami
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, Beaucouzé, France
| | - Guillaume Tcherkez
- Institut de Recherche en Horticulture et Semences, INRAe, Université d'Angers, Beaucouzé, France
- Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
4
|
Janczarek M, Kozieł M, Adamczyk P, Buczek K, Kalita M, Gromada A, Mordzińska-Rak A, Polakowski C, Bieganowski A. Symbiotic efficiency of Rhizobium leguminosarum sv. trifolii strains originating from the subpolar and temperate climate regions. Sci Rep 2024; 14:6264. [PMID: 38491088 PMCID: PMC10943007 DOI: 10.1038/s41598-024-56988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Red clover (Trifolium pratense L.) is a forage legume cultivated worldwide. This plant is capable of establishing a nitrogen-fixing symbiosis with Rhizobium leguminosarum symbiovar trifolii strains. To date, no comparative analysis of the symbiotic properties and heterogeneity of T. pratense microsymbionts derived from two distinct geographic regions has been performed. In this study, the symbiotic properties of strains originating from the subpolar and temperate climate zones in a wide range of temperatures (10-25 °C) have been characterized. Our results indicate that all the studied T. pratense microsymbionts from two geographic regions were highly efficient in host plant nodulation and nitrogen fixation in a wide range of temperatures. However, some differences between the populations and between the strains within the individual population examined were observed. Based on the nodC and nifH sequences, the symbiotic diversity of the strains was estimated. In general, 13 alleles for nodC and for nifH were identified. Moreover, 21 and 61 polymorphic sites in the nodC and nifH sequences were found, respectively, indicating that the latter gene shows higher heterogeneity than the former one. Among the nodC and nifH alleles, three genotypes (I-III) were the most frequent, whereas the other alleles (IV-XIII) proved to be unique for the individual strains. Based on the nodC and nifH allele types, 20 nodC-nifH genotypes were identified. Among them, the most frequent were three genotypes marked as A (6 strains), B (5 strains), and C (3 strains). Type A was exclusively found in the temperate strains, whereas types B and C were identified in the subpolar strains. The remaining 17 genotypes were found in single strains. In conclusion, our data indicate that R. leguminosarum sv. trifolii strains derived from two climatic zones show a high diversity with respect to the symbiotic efficiency and heterogeneity. However, some of the R. leguminosarum sv. trifolii strains exhibit very good symbiotic potential in the wide range of the temperatures tested; hence, they may be used in the future for improvement of legume crop production.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland.
| | - Marta Kozieł
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Paulina Adamczyk
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Katarzyna Buczek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Anna Gromada
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Aleksandra Mordzińska-Rak
- Department of Biochemistry and Molecular Biology, Faculty of Medical Studies, Medical University in Lublin, 1 Chodźki, 20-093, Lublin, Poland
| | - Cezary Polakowski
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, 4 Doświadczalna, 20-290, Lublin, Poland
| | - Andrzej Bieganowski
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, 4 Doświadczalna, 20-290, Lublin, Poland
| |
Collapse
|
5
|
Ngwenya ZD, Dakora FD. Symbiotic Functioning and Photosynthetic Rates Induced by Rhizobia Associated with Jack Bean ( Canavalia ensiformis L.) Nodulation in Eswatini. Microorganisms 2023; 11:2786. [PMID: 38004797 PMCID: PMC10673450 DOI: 10.3390/microorganisms11112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Improving the efficiency of the legume-rhizobia symbiosis in African soils for increased grain yield would require the use of highly effective strains capable of nodulating a wide range of legume plants. This study assessed the photosynthetic functioning, N2 fixation, relative symbiotic effectiveness (%RSE) and C assimilation of 22 jack bean (Canavalia ensiformis L.) microsymbionts in Eswatini soils as a first step to identifying superior isolates for inoculant production. The results showed variable nodule number, nodule dry matter, shoot biomass and photosynthetic rates among the strains tested under glasshouse conditions. Both symbiotic parameters and C accumulation differed among the test isolates at the shoot, root and whole-plant levels. Although 7 of the 22 jack bean isolates showed much greater relative symbiotic efficiency than the commercial Bradyrhizobium strain XS21, only one isolate (TUTCEeS2) was statistically superior to the inoculant strain, which indicates its potential for use in inoculant formulation after field testing. Furthermore, the isolates that recorded high %RSE elicited greater amounts of fixed N.
Collapse
Affiliation(s)
- Zanele D. Ngwenya
- Department of Crop Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa;
| | - Felix D. Dakora
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
6
|
Zhang J, Feng Y, Wang J, Wang E, Andrews M. Diverse Bradyrhizobium spp. with Similar Symbiosis Genes Nodulate Peanut in Different Regions of China: Characterization of Symbiovar sv. Arachis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3776. [PMID: 37960132 PMCID: PMC10647606 DOI: 10.3390/plants12213776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
A total of 219 rhizobial strains isolated from peanut grown in soils from six peanut croplands in Zhengyang county, Henan Province, were typed by PCR-RFLP of IGS sequences. Their phylogenetic relationships were refined on representative strains using sequence analyses of 16S rRNA genes, housekeeping genes (atpD, recA, glnII) and symbiosis genes (nodA, nodC and nifH). The 219 rhizobial isolates were classified into 13 IGS types, and twenty representatives were defined within eight Bradyrhizobium genospecies: B. guangdongense covering 5 IGS types (75.2% of total isolates), B. guangzhouense (2 IGS types, 2.7% total isolates), B. zhengyangense (1 IGS type, 11.3% total isolates) and five novel genospecies (5 IGS types, 0.9 to 3.2% total isolates). All representative strains had identical nodA, nodC and nifH sequences except for one nifH sequence. With this one exception, these sequences were identical to those of the type strains of Bradyrhizobium species and several Bradyrhizobium genospecies isolated from peanut in different regions of China. The nodC sequences of all strains showed < 67% similarity to the closest strains on the Genbank database indicating that they are representative of a novel Bradyrhiobium symbiovar. This study has shown that (1) diverse Bradyrhizobium spp. with similar symbiosis genes nodulate peanut in different regions of China. (2) Horizontal transfer of genes involved in nodulating peanut is common between Bradyrhizobium species in soils used to grow the crop in China. (3) The strains studied here are representative of a novel Bradyrhizobium symbiovar that nodulates peanut in China. We propose the name sv. arachis for this novel symbiovar indicating that the strains were isolated from Arachis hypogaea. Results here have practical implications in relation to the selection of rhizobial inoculants for peanut in China.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (Y.F.); (J.W.)
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, China
| | - Yufeng Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (Y.F.); (J.W.)
| | - Jingqi Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (Y.F.); (J.W.)
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
7
|
Granada Agudelo M, Ruiz B, Capela D, Remigi P. The role of microbial interactions on rhizobial fitness. FRONTIERS IN PLANT SCIENCE 2023; 14:1277262. [PMID: 37877089 PMCID: PMC10591227 DOI: 10.3389/fpls.2023.1277262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Rhizobia are soil bacteria that can establish a nitrogen-fixing symbiosis with legume plants. As horizontally transmitted symbionts, the life cycle of rhizobia includes a free-living phase in the soil and a plant-associated symbiotic phase. Throughout this life cycle, rhizobia are exposed to a myriad of other microorganisms that interact with them, modulating their fitness and symbiotic performance. In this review, we describe the diversity of interactions between rhizobia and other microorganisms that can occur in the rhizosphere, during the initiation of nodulation, and within nodules. Some of these rhizobia-microbe interactions are indirect, and occur when the presence of some microbes modifies plant physiology in a way that feeds back on rhizobial fitness. We further describe how these interactions can impose significant selective pressures on rhizobia and modify their evolutionary trajectories. More extensive investigations on the eco-evolutionary dynamics of rhizobia in complex biotic environments will likely reveal fascinating new aspects of this well-studied symbiotic interaction and provide critical knowledge for future agronomical applications.
Collapse
Affiliation(s)
- Margarita Granada Agudelo
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Bryan Ruiz
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Delphine Capela
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Philippe Remigi
- Laboratoire des Interactions Plantes Microbes Environnement (LIPME), Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| |
Collapse
|
8
|
Carscadden KA, Batstone RT, Hauser FE. Origins and evolution of biological novelty. Biol Rev Camb Philos Soc 2023; 98:1472-1491. [PMID: 37056155 DOI: 10.1111/brv.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Understanding the origins and impacts of novel traits has been a perennial interest in many realms of ecology and evolutionary biology. Here, we build on previous evolutionary and philosophical treatments of this subject to encompass novelties across biological scales and eco-evolutionary perspectives. By defining novelties as new features at one biological scale that have emergent effects at other biological scales, we incorporate many forms of novelty that have previously been treated in isolation (such as novelty from genetic mutations, new developmental pathways, new morphological features, and new species). Our perspective is based on the fundamental idea that the emergence of a novelty, at any biological scale, depends on its environmental and genetic context. Through this lens, we outline a broad array of generative mechanisms underlying novelty and highlight how genomic tools are transforming our understanding of the origins of novelty. Lastly, we present several case studies to illustrate how novelties across biological scales and systems can be understood based on common mechanisms of change and their environmental and genetic contexts. Specifically, we highlight how gene duplication contributes to the evolution of new complex structures in visual systems; how genetic exchange in symbiosis alters functions of both host and symbiont, resulting in a novel organism; and how hybridisation between species can generate new species with new niches.
Collapse
Affiliation(s)
- Kelly A Carscadden
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant St, Boulder, CO, 80309, USA
| | - Rebecca T Batstone
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
9
|
Zuber NE, Fornasero LV, Erdozain Bagolín SA, Lozano MJ, Sanjuán J, Del Papa MF, Lagares A. Diversity, Genomics and Symbiotic Characteristics of Sinorhizobia That Nodulate Desmanthus spp. in Northwest Argentina. BIOLOGY 2023; 12:958. [PMID: 37508388 PMCID: PMC10376216 DOI: 10.3390/biology12070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
Desmanthus spp. are legumes with the ability to associate with diverse α-proteobacteria-a microsymbiont-in order to establish nitrogen-fixing root nodules. A previous investigation from our laboratory revealed that the main bacteria associated with Desmanthus paspalaceus in symbiosis in central Argentina (Province of Santa Fe) were quite diverse and belonged to the genera Rhizobium and Mesorhizobium. To achieve a more extensive view of the local microsymbionts associated with Desmanthus spp., we sampled three different sites in Jujuy and Salta, in northwest Argentina. Matrix-assisted Laser-Desorption-Ionization Time-of-Flight mass spectrometry (MALDI-TOF) typing, 16S-rDNA analysis, and genome sequencing demonstrated that the dominant root-nodule microsymbionts belonged to the genus Sinorhizobium, with some sequenced genomes related to Sinorhizobium mexicanum, Sinorhizobium chiapanecum, and Sinorhizobium psoraleae. An analysis of nodA and nodC markers indicated that, in some of the isolates, horizontal gene transfer appeared to be responsible for the lack of congruence between the phylogenies of the chromosome and of the symbiotic region. These results revealed diverse evolutionary strategies for reaching the current Desmanthus-microsymbiont diversity. What is remarkable beside their observed genetic diversity is that the tolerance profiles of these isolates to abiotic stresses (temperature, salt concentration, pH) were quite coincident with the separation of the sinorhizobia according to place of origin, suggesting possible ecoedaphic adaptations. This observation, together with the higher aerial dry-weight matter that some isolates generated in Desmanthus virgatus cv. Marc when compared to the biomass generated by the commercial strain Sinorhizobium terangae CB3126, distinguish the collected sinorhizobia as constituting valuable germplasm for evaluation in local fields to select for more efficient symbiotic pairs.
Collapse
Affiliation(s)
- Nicolás Emilio Zuber
- IBBM-Instituto de Biotecnología y Biología Molecular, CONICET, CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, La Plata 1900, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Esperanza 3080, Argentina
| | | | - Sofía Agostina Erdozain Bagolín
- IBBM-Instituto de Biotecnología y Biología Molecular, CONICET, CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, La Plata 1900, Argentina
| | - Mauricio Javier Lozano
- IBBM-Instituto de Biotecnología y Biología Molecular, CONICET, CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, La Plata 1900, Argentina
| | - Juan Sanjuán
- Departamento de Microbiología del Suelo y la Planta, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), E-18008 Granada, Spain
| | - María Florencia Del Papa
- IBBM-Instituto de Biotecnología y Biología Molecular, CONICET, CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, La Plata 1900, Argentina
| | - Antonio Lagares
- IBBM-Instituto de Biotecnología y Biología Molecular, CONICET, CCT-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115, La Plata 1900, Argentina
| |
Collapse
|
10
|
Libourel C, Keller J, Brichet L, Cazalé AC, Carrère S, Vernié T, Couzigou JM, Callot C, Dufau I, Cauet S, Marande W, Bulach T, Suin A, Masson-Boivin C, Remigi P, Delaux PM, Capela D. Comparative phylotranscriptomics reveals ancestral and derived root nodule symbiosis programmes. NATURE PLANTS 2023:10.1038/s41477-023-01441-w. [PMID: 37322127 PMCID: PMC10356618 DOI: 10.1038/s41477-023-01441-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Symbiotic interactions such as the nitrogen-fixing root nodule symbiosis (RNS) have structured ecosystems during the evolution of life. Here we aimed at reconstructing ancestral and intermediate steps that shaped RNS observed in extant flowering plants. We compared the symbiotic transcriptomic responses of nine host plants, including the mimosoid legume Mimosa pudica for which we assembled a chromosome-level genome. We reconstructed the ancestral RNS transcriptome composed of most known symbiotic genes together with hundreds of novel candidates. Cross-referencing with transcriptomic data in response to experimentally evolved bacterial strains with gradual symbiotic proficiencies, we found the response to bacterial signals, nodule infection, nodule organogenesis and nitrogen fixation to be ancestral. By contrast, the release of symbiosomes was associated with recently evolved genes encoding small proteins in each lineage. We demonstrate that the symbiotic response was mostly in place in the most recent common ancestor of the RNS-forming species more than 90 million years ago.
Collapse
Affiliation(s)
- Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Lukas Brichet
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | | | - Sébastien Carrère
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Tatiana Vernié
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Jean-Malo Couzigou
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Caroline Callot
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Isabelle Dufau
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Stéphane Cauet
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - William Marande
- INRAE, CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Tabatha Bulach
- INRAE, US1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Amandine Suin
- INRAE, US1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Philippe Remigi
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France.
| | - Delphine Capela
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
11
|
Moore LD, Ballinger MJ. The toxins of vertically transmitted Spiroplasma. Front Microbiol 2023; 14:1148263. [PMID: 37275155 PMCID: PMC10232968 DOI: 10.3389/fmicb.2023.1148263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/19/2023] [Indexed: 06/07/2023] Open
Abstract
Vertically transmitted (VT) microbial symbionts play a vital role in the evolution of their insect hosts. A longstanding question in symbiont research is what genes help promote long-term stability of vertically transmitted lifestyles. Symbiont success in insect hosts is due in part to expression of beneficial or manipulative phenotypes that favor symbiont persistence in host populations. In Spiroplasma, these phenotypes have been linked to toxin and virulence domains among a few related strains. However, these domains also appear frequently in phylogenetically distant Spiroplasma, and little is known about their distribution across the Spiroplasma genus. In this study, we present the complete genome sequence of the Spiroplasma symbiont of Drosophila atripex, a non-manipulating member of the Ixodetis clade of Spiroplasma, for which genomic data are still limited. We perform a genus-wide comparative analysis of toxin domains implicated in defensive and reproductive phenotypes. From 12 VT and 31 non-VT Spiroplasma genomes, ribosome-inactivating proteins (RIPs), OTU-like cysteine proteases (OTUs), ankyrins, and ETX/MTX2 domains show high propensity for VT Spiroplasma compared to non-VT Spiroplasma. Specifically, OTU and ankyrin domains can be found only in VT-Spiroplasma, and RIP domains are found in all VT Spiroplasma and three non-VT Spiroplasma. These domains are frequently associated with Spiroplasma plasmids, suggesting a possible mechanism for dispersal and maintenance among heritable strains. Searching insect genome assemblies available on public databases uncovered uncharacterized Spiroplasma genomes from which we identified several spaid-like genes encoding RIP, OTU, and ankyrin domains, suggesting functional interactions among those domain types. Our results suggest a conserved core of symbiont domains play an important role in the evolution and persistence of VT Spiroplasma in insects.
Collapse
Affiliation(s)
- Logan D. Moore
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States
| | | |
Collapse
|
12
|
Hnini M, El Attar I, Taha K, Aurag J. Genetic diversity, symbiotic efficiency, stress tolerance, and plant growth promotion traits of rhizobia nodulating Vachellia tortilis subsp. raddiana growing in dryland soils in southern Morocco. Syst Appl Microbiol 2023; 46:126434. [PMID: 37210974 DOI: 10.1016/j.syapm.2023.126434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
In the present study, we analyzed the genetic diversity, phylogenetic relationships, stress tolerance, phytobeneficial traits, and symbiotic characteristics of rhizobial strains isolated from root nodules of Vachellia tortilis subsp. raddiana grown in soils collected in the extreme Southwest of the Anti-Atlas Mountains in Morocco. Subsequent to Rep-PCR fingerprinting, 16S rDNA gene sequencing of 15 representative strains showed that all of them belong to the genus Ensifer. Phylogenetic analysis and concatenation of the housekeeping genes gyrB, rpoB, recA, and dnaK revealed that the entire collection (except strain LMR678) shared 99.08 % to 99.92% similarity with Ensifer sp. USDA 257 and 96.92% to 98.79% with Sinorhizobium BJ1. Phylogenetic analysis of nodC and nodA sequences showed that all strains but one (LMR678) formed a phylogenetic group with the type strain "E. aridi" LMR001T (similarity over 98%). Moreover, it was relevant that most strains belong to the symbiovar vachelliae. In vitro tests revealed that five strains produced IAA, four solubilized inorganic phosphate, and one produced siderophores. All strains showed tolerance to NaCl concentrations ranging from 2 to 12% and grew at up to 10% of PEG6000. A greenhouse plant inoculation test conducted during five months demonstrated that most rhizobial strains were infective and efficient. Strains LMR688, LMR692, and LMR687 exhibited high relative symbiotic efficiency values (respectively 231.6 %, 171.96 %, and 140.84 %). These strains could be considered as the most suitable candidates for inoculation of V. t. subsp. raddiana, to be used as a pioneer plant for restoring arid soils threatened with desertification.
Collapse
Affiliation(s)
- Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000 Rabat, Morocco
| | - Imane El Attar
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000 Rabat, Morocco
| | - Kaoutar Taha
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000 Rabat, Morocco
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000 Rabat, Morocco.
| |
Collapse
|
13
|
Hernández-Oaxaca D, Claro K, Rogel MA, Rosenblueth M, Martinez-Romero J, Martinez-Romero E. Novel symbiovars ingae, lysilomae and lysilomaefficiens in bradyrhizobia from tree-legume nodules. Syst Appl Microbiol 2023; 46:126433. [PMID: 37207476 DOI: 10.1016/j.syapm.2023.126433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/16/2023] [Accepted: 05/06/2023] [Indexed: 05/21/2023]
Abstract
Inga vera and Lysiloma tree legumes form nodules with Bradyrhizobium spp. from the japonicum group that represent novel genomospecies, for which we describe here using genome data, symbiovars lysilomae, lysilomaefficiens and ingae. Genes encoding Type three secretion system (TTSS) that could affect host specificity were found in ingae but not in lysilomae nor in lysilomaefficiens symbiovars and uptake hydrogenase hup genes (that affect nitrogen fixation) were observed in bradyrhizobia from the symbiovars ingae and lysilomaefficiens. nolA gene was found in the symbiovar lysilomaefficiens but not in strains from lysilomae. We discuss that multiple genes may dictate symbiosis specificity. Besides, toxin-antitoxin genes were found in the symbiosis islands in bradyrhizobia from symbiovars ingae and lysilomaefficiens. A limit (95%) to define symbiovars with nifH gene sequences was proposed here.
Collapse
Affiliation(s)
| | - Karen Claro
- Genomic Science Center, UNAM Cuernavaca México, México
| | - Marco A Rogel
- Genomic Science Center, UNAM Cuernavaca México, México
| | | | | | | |
Collapse
|
14
|
Msaddak A, Mars M, Quiñones MA, Lucas MM, Pueyo JJ. Lupin, a Unique Legume That Is Nodulated by Multiple Microsymbionts: The Role of Horizontal Gene Transfer. Int J Mol Sci 2023; 24:ijms24076496. [PMID: 37047476 PMCID: PMC10094711 DOI: 10.3390/ijms24076496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Lupin is a high-protein legume crop that grows in a wide range of edaphoclimatic conditions where other crops are not viable. Its unique seed nutrient profile can promote health benefits, and it has been proposed as a phytoremediation plant. Most rhizobia nodulating Lupinus species belong to the genus Bradyrhizobium, comprising strains that are phylogenetically related to B. cytisi, B. hipponenese, B. rifense, B. iriomotense/B. stylosanthis, B. diazoefficiens, B. japonicum, B. canariense/B. lupini, and B. retamae/B. valentinum. Lupins are also nodulated by fast-growing bacteria within the genera Microvirga, Ochrobactrum, Devosia, Phyllobacterium, Agrobacterium, Rhizobium, and Neorhizobium. Phylogenetic analyses of the nod and nif genes, involved in microbial colonization and symbiotic nitrogen fixation, respectively, suggest that fast-growing lupin-nodulating bacteria have acquired their symbiotic genes from rhizobial genera other than Bradyrhizobium. Horizontal transfer represents a key mechanism allowing lupin to form symbioses with bacteria that were previously considered as non-symbiotic or unable to nodulate lupin, which might favor lupin’s adaptation to specific habitats. The characterization of yet-unstudied Lupinus species, including microsymbiont whole genome analyses, will most likely expand and modify the current lupin microsymbiont taxonomy, and provide additional knowledge that might help to further increase lupin’s adaptability to marginal soils and climates.
Collapse
Affiliation(s)
- Abdelhakim Msaddak
- Department of Soil. Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources, BVBAA, Faculty of Sciences, University of Gabès, Erriadh, Zrig, Gabès 6072, Tunisia
| | - Mohamed Mars
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources, BVBAA, Faculty of Sciences, University of Gabès, Erriadh, Zrig, Gabès 6072, Tunisia
| | - Miguel A. Quiñones
- Department of Soil. Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain
| | - M. Mercedes Lucas
- Department of Soil. Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain
| | - José J. Pueyo
- Department of Soil. Plant and Environmental Quality, Institute of Agricultural Sciences, ICA-CSIC, 28006 Madrid, Spain
| |
Collapse
|
15
|
Nitrogen-Fixing Symbiotic Paraburkholderia Species: Current Knowledge and Future Perspectives. NITROGEN 2023. [DOI: 10.3390/nitrogen4010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
A century after the discovery of rhizobia, the first Beta-proteobacteria species (beta-rhizobia) were isolated from legume nodules in South Africa and South America. Since then, numerous species belonging to the Burkholderiaceae family have been isolated. The presence of a highly branching lineage of nodulation genes in beta-rhizobia suggests a long symbiotic history. In this review, we focus on the beta-rhizobial genus Paraburkholderia, which includes two main groups: the South American mimosoid-nodulating Paraburkholderia and the South African predominantly papilionoid-nodulating Paraburkholderia. Here, we discuss the latest knowledge on Paraburkholderia nitrogen-fixing symbionts in each step of the symbiosis, from their survival in the soil, through the first contact with the legumes until the formation of an efficient nitrogen-fixing symbiosis in root nodules. Special attention is given to the strain P. phymatum STM815T that exhibits extraordinary features, such as the ability to: (i) enter into symbiosis with more than 50 legume species, including the agriculturally important common bean, (ii) outcompete other rhizobial species for nodulation of several legumes, and (iii) endure stressful soil conditions (e.g., high salt concentration and low pH) and high temperatures.
Collapse
|
16
|
Competitiveness and Phylogenetic Relationship of Rhizobial Strains with Different Symbiotic Efficiency in Trifolium repens: Conversion of Parasitic into Non-Parasitic Rhizobia by Natural Symbiotic Gene Transfer. BIOLOGY 2023; 12:biology12020243. [PMID: 36829520 PMCID: PMC9953144 DOI: 10.3390/biology12020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
Abstract
In Uruguayan soils, populations of native and naturalized rhizobia nodulate white clover. These populations include efficient rhizobia but also parasitic strains, which compete for nodule occupancy and hinder optimal nitrogen fixation by the grassland. Nodulation competitiveness assays using gusA-tagged strains proved a high nodule occupancy by the inoculant strain U204, but this was lower than the strains with intermediate efficiencies, U268 and U1116. Clover biomass production only decreased when the parasitic strain UP3 was in a 99:1 ratio with U204, but not when UP3 was at equal or lower numbers than U204. Based on phylogenetic analyses, strains with different efficiencies did not cluster together, and U1116 grouped with the parasitic strains. Our results suggest symbiotic gene transfer from an effective strain to U1116, thereby improving its symbiotic efficiency. Genome sequencing of U268 and U204 strains allowed us to assign them to species Rhizobium redzepovicii, the first report of this species nodulating clover, and Rhizobium leguminosarun, respectively. We also report the presence of hrrP- and sapA-like genes in the genomes of WSM597, U204, and U268 strains, which are related to symbiotic efficiency in rhizobia. Interestingly, we report here chromosomally located hrrP-like genes.
Collapse
|
17
|
Mahdhi A, Mars M, Rejili M. Members of Ensifer and Rhizobium genera are new bacterial endosymbionts nodulating Pisum sativum (L.). FEMS Microbiol Ecol 2023; 99:fiad001. [PMID: 36597782 DOI: 10.1093/femsec/fiad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Abstract
A total of 84 Pisum sativum legume nodulating bacteria (LNB) were isolated from seven geographical sites from southern Tunisia. Phylogenetic analyses based on partial sequences of 16S rRNA gene and the housekeeping genes glnII, and recA grouped strains into six clusters, four of which belonged to the genus Rhizobium and two to the Ensifer genus. Among Rhizobium clusters, 41 strains were affiliated to Rhizobium leguminosarum, two strains to R. pisi, two strains to R. etli, and interestingly two strains belonged to previously undescribed Rhizobium species. The remaining two strains were closely related to Ensifer medicae (two strains) and Ensifer meliloti (two strains). A symbiotic nodC gene-based phylogeny and host specificity test showed that all Rhizobium strains nodulating pea belonged to the symbiovar viciae, whereas the Ensifer strains were associated with the symbiovar meliloti never described to date. All strains under investigation differed in the number of induced root nodules and the effectiveness of atmospheric nitrogen fixation. The R. leguminosarum PsZA23, R. leguminosarum PsGBL42, and E. medicae PsTA22a, forming the most effective symbiosis with the plant host, are potential candidates for inoculation programs.
Collapse
Affiliation(s)
- A Mahdhi
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) - Faculty of Sciences of Gabes, University of Gabes, Erriadh, Zrig 6072, Gabes, Tunisia
| | - M Mars
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) - Faculty of Sciences of Gabes, University of Gabes, Erriadh, Zrig 6072, Gabes, Tunisia
| | - M Rejili
- Laboratory of Biodiversity and Valorization of Arid Areas Bioresources (BVBAA) - Faculty of Sciences of Gabes, University of Gabes, Erriadh, Zrig 6072, Gabes, Tunisia
- Department of Life Sciences, College of Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| |
Collapse
|
18
|
Tang M, Wang H, Qi X, He T, Zhang B, Wang E, Yu M, Wang B, Wang F, Liu Z, Liu X. Diversification of Sinorhizobium populations associated with Medicago polymorpha and Medicago lupulina in purple soil of China. Front Microbiol 2023; 13:1055694. [PMID: 36687603 PMCID: PMC9846747 DOI: 10.3389/fmicb.2022.1055694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
The double selection of environment adaptation and host specificity forced the diversification of rhizobia in nature. In the tropical region of China, Medicago polymorpha and Medicago lupulina are widely distributed, particularly in purple soil. However, the local distribution and diversity of rhizobia associated with these legumes has not been systematically investigated. To this end, root nodules of M. polymorpha and M. lupulina grown in purple soil at seven locations in Yunnan Province of China were collected for rhizobial isolation. The obtained rhizobia were characterized by RFLP of 16S-23S rRNA intergenic spacer, BOXAIR fingerprinting, and phylogeny of housekeeping and symbiosis genes. As result, a total of 91 rhizobial strains were classified into species Sinorhizobium medicae and S. meliloti, while three nodC gene types were identified among them. S. medicae containing nodC of type I was dominant in farmlands associated with M. polymorpha; while S. meliloti harboring nodC of type III was dominant in wild land nodulated by M. lupulina. For both rhizobial species, greater genetic diversity was detected in the populations isolated from their preferred host plant. A high level of genetic differentiation was observed between the two Sinorhizobium species, and gene flow was evident within the populations of the same species derived from different soil types, indicating that rhizobial evolution is likely associated with the soil features. To examine the effects of environmental features on rhizobial distribution, soil physicochemical traits and rhizobial genotypes were applied for constrained analysis of principle coordinates, which demonstrated that soil features like pH, nitrogen and sodium were the principle factors governing the rhizobial geographical distribution. Altogether, both S. medicae and S. meliloti strains could naturally nodulate with M. polymorpha and M. lupulina, but the rhizobium-legume symbiosis compatibility determined by both the host species and soil factors was also highlighted.
Collapse
Affiliation(s)
- Mingxing Tang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding City, China
| | - Haoyu Wang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding City, China
| | - Xin Qi
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding City, China
| | - Teng He
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding City, China
| | - Bin Zhang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding City, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Miao Yu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding City, China
| | - Beinan Wang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding City, China
| | - Fang Wang
- Key Laboratory of State Forestry Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming City, China
| | - Zhongkuan Liu
- Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China,*Correspondence: Zhongkuan Liu, ; Xiaoyun Liu,
| | - Xiaoyun Liu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding City, China,*Correspondence: Zhongkuan Liu, ; Xiaoyun Liu,
| |
Collapse
|
19
|
Ashrafi S, Kuzmanović N, Patz S, Lohwasser U, Bunk B, Spröer C, Lorenz M, Elhady A, Frühling A, Neumann-Schaal M, Verbarg S, Becker M, Thünen T. Two New Rhizobiales Species Isolated from Root Nodules of Common Sainfoin (Onobrychis viciifolia) Show Different Plant Colonization Strategies. Microbiol Spectr 2022; 10:e0109922. [PMID: 36005754 PMCID: PMC9603459 DOI: 10.1128/spectrum.01099-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/04/2022] [Indexed: 12/30/2022] Open
Abstract
Root nodules of legume plants are primarily inhabited by rhizobial nitrogen-fixing bacteria. Here, we propose two new Rhizobiales species isolated from root nodules of common sainfoin (Onobrychis viciifolia), as shown by core-gene phylogeny, overall genome relatedness indices, and pan-genome analysis. Mesorhizobium onobrychidis sp. nov. actively induces nodules and achieves atmospheric nitrogen and carbon dioxide fixation. This species appears to be depleted in motility genes and is enriched in genes for direct effects on plant growth performance. Its genome reveals functional and plant growth-promoting signatures, like a large unique chromosomal genomic island with high density of symbiotic genetic traits. Onobrychidicola muellerharveyae gen. nov. sp. nov. is described as a type species of the new genus Onobrychidicola in Rhizobiaceae. This species comprises unique genetic features and plant growth-promoting traits (PGPTs), which strongly indicate its function in biotic stress reduction and motility. We applied a newly developed bioinformatics approach for in silico prediction of PGPTs (PGPT-Pred), which supports the different lifestyles of the two new species and the plant growth-promoting performance of M. onobrychidis in the greenhouse trial. IMPORTANCE The intensive use of chemical fertilizers has a variety of negative effects on the environment. Increased utilization of biological nitrogen fixation (BNF) is one way to mitigate those negative impacts. In order to optimize BNF, suitable candidates for different legume species are required. Despite intensive search for new rhizobial bacteria associated with legumes, no new rhizobia have recently been identified from sainfoin (Onobrychis viciifolia). Here, we report on the discovery of two new rhizobial species associated with sainfoin, which are of high importance for the host and may help to increase sustainability in agricultural practices. We employed the combination of in silico prediction and in planta experiments, which is an effective way to detect promising plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Samad Ashrafi
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Nemanja Kuzmanović
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Braunschweig, Germany
| | - Sascha Patz
- University of Tübingen, Institute for Bioinformatics and Medical Informatics, Algorithms in Bioinformatics, Tübingen, Germany
| | - Ulrike Lohwasser
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Genebank Department, Seeland, Germany
| | - Boyke Bunk
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Maria Lorenz
- Technische Universität Braunschweig, Braunschweig, Germany
| | - Ahmed Elhady
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Anja Frühling
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Susanne Verbarg
- Leibniz Institute German Collection of Microorganisms and Cell Cultures (DSMZ), Braunschweig, Germany
| | - Matthias Becker
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health, Braunschweig, Germany
| | - Torsten Thünen
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Crop and Soil Science, Braunschweig, Germany
| |
Collapse
|
20
|
Choufa C, Tidjani AR, Gauthier A, Harb M, Lao J, Leblond-Bourget N, Vos M, Leblond P, Bontemps C. Prevalence and mobility of integrative and conjugative elements within a Streptomyces natural population. Front Microbiol 2022; 13:970179. [PMID: 36177458 PMCID: PMC9513070 DOI: 10.3389/fmicb.2022.970179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
Horizontal Gene Transfer (HGT) is a powerful force generating genomic diversity in bacterial populations. HGT in Streptomyces is in large part driven by conjugation thanks to plasmids, Integrative and Conjugative elements (ICEs) and Actinomycete ICEs (AICEs). To investigate the impact of ICE and AICE conjugation on Streptomyces genome evolution, we used in silico and experimental approaches on a set of 11 very closely related strains isolated from a millimeter scale rhizosphere population. Through bioinformatic searches of canonical conjugation proteins, we showed that AICEs are the most frequent integrative conjugative elements, with the central chromosome region being a hotspot for integrative element insertion. Strains exhibited great variation in AICE composition consistent with frequent HGT and/or gene loss. We found that single insertion sites can be home to different elements in different strains (accretion) and conversely, elements belonging to the same family can be found at different insertion sites. A wide variety of cargo genes was present in the AICEs with the potential to mediate strain-specific adaptation (e.g., DNA metabolism and resistance genes to antibiotic and phages). However, a large proportion of AICE cargo genes showed hallmarks of pseudogenization, consistent with deleterious effects of cargo genes on fitness. Pock assays enabled the direct visualization of conjugal AICE transfer and demonstrated the transfer of AICEs between some, but not all, of the isolates. Multiple AICEs were shown to be able to transfer during a single mating event. Although we did not obtain experimental evidence for transfer of the sole chromosomal ICE in this population, genotoxic stress mediated its excision from the chromosome, suggesting its functionality. Our results indicate that AICE-mediated HGT in Streptomyces populations is highly dynamic, with likely impact on strain fitness and the ability to adapt to environmental change.
Collapse
Affiliation(s)
| | - Abdoul-Razak Tidjani
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- Faculty of Medecine, CNRS, Grenoble INP, CHU Grenoble-Alpes, University Grenoble-Alpes, TIMC (UMR 5525), Grenoble, France
| | | | - Manar Harb
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- INRAE-ONIRIS, Nantes, France
| | - Julie Lao
- INRAE, UR1404 MaIAGE, Jouy-en-Josas, France
| | | | - Michiel Vos
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Penryn, United Kingdom
| | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- *Correspondence: Pierre Leblond,
| | - Cyril Bontemps
- Université de Lorraine, INRAE, DynAMic, Nancy, France
- Cyril Bontemps,
| |
Collapse
|
21
|
Zhang J, Peng S, Li S, Song J, Brunel B, Wang E, James EK, Chen W, Andrews M. Arachis hypogaea L. from Acid Soils of Nanyang (China) Is Frequently Associated with Bradyrhizobium guangdongense and Occasionally with Bradyrhizobium ottawaense or Three Bradyrhizobium Genospecies. MICROBIAL ECOLOGY 2022; 84:556-564. [PMID: 34528105 DOI: 10.1007/s00248-021-01852-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Henan Province is a major area of peanut production in China but the rhizobia nodulating the crop in this region have not been described. A collection of 217 strains of peanut rhizobia was obtained from six field sites across four soil types in Henan Province, North China, by using peanut as a trap host under glasshouse conditions. The 217 strains separated into 8 distinct types on PCR-RFLP analysis of their IGS sequences. Phylogenetic analysis of the 16S rRNA, recA, atpD, and glnII genes of 11 representative strains of the 8 IGS types identified Bradyrhizobium guangdongense, B. ottawaense and three novel Bradyrhizobium genospecies. Bradyrhizobium guangdongense was dominant, accounting for 75.0% of the total isolates across the field sites while B. ottawaense covered 5.1% and the three novel Bradyrhizobium genospecies 4.1 to 8.8% of the total. The symbiosis-related nodA and nifH gene sequences were not congruent with the core genes on phylogenetic analysis and separated into three groups, two of which were similar to sequences of Bradyrhizobium spp. isolated from peanut in south-east China and the third identical to that of B. yuanmingense isolated from Lespedeza cuneata in northern China. A canonical correlation analysis between the distribution of IGS genotypes and soil physicochemical characteristics and climatic factors indicated that the occurrence of IGS types/species was mainly associated with soil pH and available phosphorus.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Province, Zhengzhou, 450000, People's Republic of China.
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Henan Province, Zhengzhou, 450002, People's Republic of China.
| | - Shanshan Peng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Province, Zhengzhou, 450000, People's Republic of China
| | - Shuo Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Province, Zhengzhou, 450000, People's Republic of China
| | - Jiangchun Song
- Nanyang Academy of Agricultural Sciences, Henan Province, Nanyang, 473000, People's Republic of China
| | - Brigitte Brunel
- LSTM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, México, D. F., México
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, Beijing, 100193, People's Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, 7647, New Zealand.
| |
Collapse
|
22
|
Chouhan B, Tak N, Bissa G, Adhikari D, Barik SK, Sprent JI, James EK, Jha S, Gehlot HS. Evolution of novel strains of Ensifer nodulating the invasive legume Leucaena leucocephala (Lam.) de Wit in different climatic regions of India through lateral gene transfer. FEMS Microbiol Ecol 2022; 98:6643559. [PMID: 35833268 DOI: 10.1093/femsec/fiac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 11/12/2022] Open
Abstract
More than 200 root-nodule bacterial strains were isolated from Leucaena leucocephala growing at 42 sampling sites across 12 states and three union territories of India. Genetic diversity was observed among 114 strains from various climatic zones; based on recA these were identified as strains of Ensifer, Mesorhizobium, Rhizobium and Bradyrhizobium. In MLSA strains clustered into several novel clades and lineages. Ensifer were predominant nodulating genotype isolated from majority of alkaline soils, while Mesorhizobium and Rhizobium strains were isolated from a limited sampling in North-Eastern states with acidic soils. Positive nodulation assays of selected Ensifer representing different genetic combinations of housekeeping and sym genes suggested their broad host range within the closely related mimosoid genera Vachellia, Senegalia, Mimosa and Prosopis. Leucaena selected diverse strains of Ensifer and Mesorhizobium as symbionts depending on available soil pH, climatic and other edaphic conditions in India. Lateral gene transfer seems to play a major role in genetic diversification of Ensifer exhibited in terms of Old World vs. Neotropical genetic make-up and mixed populations at several sites. Although Neotropical Ensifer strains were most symbiotically effective on Leucaena the native Ensifer are promiscuous and particularly well-adapted to a wide range of sampling sites with varied climates and edaphic factors.
Collapse
Affiliation(s)
- Bhawana Chouhan
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Nisha Tak
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Garima Bissa
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Dibyendu Adhikari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow- 226001, Uttar Pradesh, India
| | - Saroj K Barik
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow- 226001, Uttar Pradesh, India
| | - Janet I Sprent
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Shweta Jha
- Plant Functional Genomics Lab, Biotechnology Unit, Department of Botany, UGC-Centre of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Hukam S Gehlot
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| |
Collapse
|
23
|
Stillson PT, Baltrus DA, Ravenscraft A. Prevalence of an Insect-Associated Genomic Region in Environmentally Acquired Burkholderiaceae Symbionts. Appl Environ Microbiol 2022; 88:e0250221. [PMID: 35435710 PMCID: PMC9088363 DOI: 10.1128/aem.02502-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Microbial symbionts are critical for the development and survival of many eukaryotes. Recent research suggests that the genes enabling these relationships can be localized in horizontally transferred regions of microbial genomes termed "symbiotic islands." Recently, a putative symbiotic island was found that may facilitate symbioses between true bugs and numerous Burkholderia species, based on analysis of five Burkholderia symbionts. We expanded on this work by exploring the putative island's prevalence, origin, and association with colonization across the bacterial family Burkholderiaceae. We performed a broad comparative analysis of 229 Burkholderiaceae genomes, including 8 new genomes of insect- or soil-associated Burkholderia sequenced for this study. We detected the region in 23% of the genomes; these were located solely within two Burkholderia clades. Our analyses suggested that the contiguous region arose at the common ancestor of plant- and insect-associated Burkholderia clades, but the genes themselves are ancestral. Although the region was initially discovered on plasmids and we did detect two likely instances of horizontal transfer within Burkholderia, we found that the region is almost always localized to a chromosome and does not possess any of the mobility elements that typify genomic islands. Finally, to attempt to deduce the region's function, we combined our data with information on several strains' abilities to colonize the insect's symbiotic organ. Although the region was associated with improved colonization of the host, this relationship was confounded with, and likely driven by, Burkholderia clade membership. These findings advance our understanding of the genomic underpinnings of a widespread insect-microbe symbiosis. IMPORTANCE Many plants and animals form intricate associations with bacteria. These pairings can be mediated by genomic islands, contiguous regions containing numerous genes with cohesive functionality. Pathogen-associated islands are well described, but recent evidence suggests that mutualistic islands, which benefit both host and symbiont, may also be common. Recently, a putative symbiosis island was found in Burkholderia symbionts of insects. We determined that this genomic region is located in only two clades of Burkholderia (the plant- and insect-associated species) and that although it has undergone horizontal transfer, it is most likely a symbiosis-associated region rather than a true island. This region is associated with improved host colonization, although this is may be due to specific Burkholderia clades' abilities to colonize rather than presence of the region. By studying the genomic basis of the insect-Burkholderia symbiosis, we can better understand how mutualisms evolve in animals.
Collapse
Affiliation(s)
- Patrick T. Stillson
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - David A. Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
| | - Alison Ravenscraft
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
24
|
Adjei JA, Aserse AA, Yli-Halla M, Ahiabor BDK, Abaidoo RC, Lindstrom K. Phylogenetically diverse Bradyrhizobium genospecies nodulate Bambara groundnut (Vigna subterranea L. Verdc) and soybean (Glycine max L. Merril) in the northern savanna zones of Ghana. FEMS Microbiol Ecol 2022; 98:fiac043. [PMID: 35404419 PMCID: PMC9329091 DOI: 10.1093/femsec/fiac043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022] Open
Abstract
A total of 102 bacterial strains isolated from nodules of three Bambara groundnut and one soybean cultivars grown in nineteen soil samples collected from northern Ghana were characterized using multilocus gene sequence analysis. Based on a concatenated sequence analysis (glnII-rpoB-recA-gyrB-atpD-dnaK), 54 representative strains were distributed in 12 distinct lineages, many of which were placed mainly in the Bradyrhizobium japonicum and Bradyrhizobium elkanii supergroups. Twenty-four of the 54 representative strains belonged to seven putative novel species, while 30 were conspecific with four recognized Bradyrhizobium species. The nodA phylogeny placed all the representative strains in the cosmopolitan nodA clade III. The strains were further separated in seven nodA subclusters with reference strains mainly of African origin. The nifH phylogeny was somewhat congruent with the nodA phylogeny, but both symbiotic genes were mostly incongruent with the core housekeeping gene phylogeny indicating that the strains acquired their symbiotic genes horizontally from distantly related Bradyrhizobium species. Using redundancy analysis, the distribution of genospecies was found to be influenced by the edaphic factors of the respective sampling sites. In general, these results mainly underscore the high genetic diversity of Bambara groundnut-nodulating bradyrhizobia in Ghanaian soils and suggest a possible vast resource of adapted inoculant strains.
Collapse
Affiliation(s)
- Josephine A Adjei
- Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
- Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
- Council for Scientific and Industrial Research, Savanna Agricultural Research Institute, PO Box 52, Tamale, Ghana
| | - Aregu A Aserse
- Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Markku Yli-Halla
- Department of Agricultural Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Benjamin D K Ahiabor
- Council for Scientific and Industrial Research, Savanna Agricultural Research Institute, PO Box 52, Tamale, Ghana
| | - Robert C Abaidoo
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
- International Institute of Tropical Agriculture, PMB 5320, Ibadan, Nigeria
| | - Kristina Lindstrom
- Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| |
Collapse
|
25
|
Batstone RT. Genomes within genomes: nested symbiosis and its implications for plant evolution. THE NEW PHYTOLOGIST 2022; 234:28-34. [PMID: 34761378 DOI: 10.1111/nph.17847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Many important plant traits are products of nested symbiosis: mobile genetic elements (MGEs) are nested within microbes, which in turn, are nested within plants. Plant trait variation is therefore not only determined by the plant's genome, but also by loci within microbes and MGEs. Yet it remains unclear how interactions and coevolution within nested symbiosis impacts the evolution of plant traits. Despite the complexities of nested symbiosis, including nonadditive interactions, understanding the evolution of plant traits is facilitated by combining quantitative genetic and functional genomic approaches that explicitly consider sources of nested genetic variation (from loci in MGEs to microbiomes). Additionally, understanding coevolution within nested symbiosis enables us to design or select for MGEs that promote plant health.
Collapse
Affiliation(s)
- Rebecca T Batstone
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| |
Collapse
|
26
|
Invasional meltdown via horizontal gene transfer of a European symbiosis island variant in North American nodule symbionts of Cytisus scoparius. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Khairnar M, Hagir A, Parmar K, Sayyed RZ, James EK, Rahi P. Phylogenetic diversity and plant growth-promoting activities of rhizobia nodulating fenugreek (Trigonella foenum-graecum Linn.) cultivated in different agroclimatic regions of India. FEMS Microbiol Ecol 2022; 98:6526309. [PMID: 35142840 DOI: 10.1093/femsec/fiac014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 11/15/2022] Open
Abstract
Fenugreek (Trigonella foenum-graecum Linn.), is an extensively cultivated legume crop used as a herb, spice, and traditional medicine in India. The symbiotic efficiency and plant growth-promoting potential of fenugreek rhizobia depend on the symbiont strain and environmental factors. We isolated 176 root-nodulating bacteria from fenugreek cultivated in different agroclimatic regions of India. MALDI-TOF MS-based identification and phylogenetic analyses based on 16S rRNA and five housekeeping genes classified the fenugreek-rhizobia as Ensifer (Sinorhizobium) meliloti. However, the strains represent separate sub-lineages of E. meliloti, distinct from all reported sub-lineages across the globe. We also observed the spatial distribution of fenugreek rhizobia, as the three sub-lineages of E. meliloti recorded during this study were specific to their respective agroclimatic regions. According to the symbiotic gene (nodC and nifH) phylogenies, all three sub-lineages of E. meliloti harboured symbiotic genes similar to symbiovar meliloti; as with the housekeeping genes, these also revealed a spatial distribution for different clades of sv. meliloti. The strains could nodulate fenugreek plants and they showed plant growth-promoting potential. Significant differences were found in the plant growth parameters in response to inoculation with the various strains, suggesting strain-level differences. This study demonstrates that fenugreek rhizobia in India are diverse and spatially distributed in different agro-climatic regions.
Collapse
Affiliation(s)
- Mitesh Khairnar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, India
| | - Ashwini Hagir
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, India
| | - Krupa Parmar
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, India
| | - Riyazali Zafarali Sayyed
- Department of Microbiology, PSGVP Mandal's, Arts, Science, and Commerce College, Shahada 425409, India
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Praveen Rahi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune 411007, India
| |
Collapse
|
28
|
Wardell GE, Hynes MF, Young PJ, Harrison E. Why are rhizobial symbiosis genes mobile? Philos Trans R Soc Lond B Biol Sci 2022; 377:20200471. [PMID: 34839705 PMCID: PMC8628070 DOI: 10.1098/rstb.2020.0471] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
Rhizobia are one of the most important and best studied groups of bacterial symbionts. They are defined by their ability to establish nitrogen-fixing intracellular infections within plant hosts. One surprising feature of this symbiosis is that the bacterial genes required for this complex trait are not fixed within the chromosome, but are encoded on mobile genetic elements (MGEs), namely plasmids or integrative and conjugative elements. Evidence suggests that many of these elements are actively mobilizing within rhizobial populations, suggesting that regular symbiosis gene transfer is part of the ecology of rhizobial symbionts. At first glance, this is counterintuitive. The symbiosis trait is highly complex, multipartite and tightly coevolved with the legume hosts, while transfer of genes can be costly and disrupt coadaptation between the chromosome and the symbiosis genes. However, horizontal gene transfer is a process driven not only by the interests of the host bacterium, but also, and perhaps predominantly, by the interests of the MGEs that facilitate it. Thus understanding the role of horizontal gene transfer in the rhizobium-legume symbiosis requires a 'mobile genetic element's-eye view' on the ecology and evolution of this important symbiosis. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Grace E. Wardell
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 1EA, UK
| | - Michael F. Hynes
- Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Peter J. Young
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Ellie Harrison
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 1EA, UK
| |
Collapse
|
29
|
Zhang J, Li S, Wang N, Yang T, Brunel B, Andrews M, Zong X, Wang E. Rhizobium sophorae is the dominant rhizobial symbiont of Vicia faba L. In North China. Syst Appl Microbiol 2021; 45:126291. [PMID: 34968802 DOI: 10.1016/j.syapm.2021.126291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 11/27/2022]
Abstract
Faba bean (Vicia faba L.) is a major introduced grain-legume crop cultivated in China. In this study, rhizobia that nodulated faba bean grown in soils from three sites in North China (Hebei Province) were isolated and characterized. Firstly, isolates were categorized into genotypes by ribosomal IGS PCR-RFLP analysis, then representatives of the different IGS genotypes were further identified by phylogenetic analyses of 16S rRNA, housekeeping (atpD, recA) and nodulation (nodC) gene sequences. Rhizobial distribution based on the IGS genotype was related to the different soil physicochemical features by redundancy analysis. IGS typing and phylogenetic analyses of 16S rRNA and concatenated housekeeping gene sequences affiliated the 103 rhizobial strains isolated into four Rhizobium species/genospecies. A total of 69 strains of 3 IGS types were assigned to R. sophorae, 20 isolates of 5 IGS types to R. changzhiense and 9 isolates of 3 IGS types to R. indicum. The representative strain of the five remaining isolates (1 IGS type) was clearly separated from all Rhizobium type strains and was most closely related to defined genospecies according to the recently described R. leguminosarum species complex. Rhizobium sophorae strains (67% of total isolates) were common in all sites and shared an identical nodC sequence typical of faba bean symbionts belonging to symbiovar viciae. In this first study of rhizobia nodulating faba bean in Hebei Province, China, R. sophorae was found to be the dominant symbiont in contrast to other countries.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450000, PR China; Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, Henan Province, PR China.
| | - Shuo Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450000, PR China
| | - Nan Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province 450000, PR China
| | - Tao Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Brigitte Brunel
- LSTM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Xuxiao Zong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México, D. F, Mexico
| |
Collapse
|
30
|
Mpai T, Jaiswal SK, Cupido CN, Dakora FD. Ecological adaptation and phylogenetic analysis of microsymbionts nodulating Polhillia, Wiborgia and Wiborgiella species in the Cape fynbos, South Africa. Sci Rep 2021; 11:23614. [PMID: 34880288 PMCID: PMC8654865 DOI: 10.1038/s41598-021-02766-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
Polhillia, Wiborgia and Wiborgiella species are shrub legumes endemic to the Cape fynbos of South Africa. They have the ability to fix atmospheric N2 when in symbiosis with soil bacteria called ‘rhizobia’. The aim of this study was to assess the morpho-physiological and phylogenetic characteristics of rhizobia associated with the nodulation of Polhillia, Wiborgia and Wiborgiella species growing in the Cape fynbos. The bacterial isolates from root nodules consisted of a mixture of fast and intermediate growers that differed in colony shape and size. The isolates exhibited tolerance to salinity (0.5–3% NaCl) and pH (pH 5–10) and different antibiotic concentrations, and could produce 0.51 to 51.23 µg mL−1 of indole-3-acetic acid (IAA), as well as solubilize tri-calcium phosphate. The ERIC-PCR results showed high genomic diversity in the rhizobial population and grouped them into two major clusters. Phylogenetic analysis based on 16S rRNA, atpD, glnII, gyrB, nifH and nodC gene sequences revealed distinct and novel evolutionary lineages related to the genus Rhizobium and Mesorhizobium, with some of them being very close to Mesorhizobium australicum. However, the phylogenetic analysis of glnII and nifH genes of some isolates showed incongruency.
Collapse
Affiliation(s)
- Tiisetso Mpai
- Department of Crop Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Sanjay K Jaiswal
- Department of Chemistry, Tshwane University of Technology, Arcadia Campus, Private Bag X680, Pretoria, 0001, South Africa.
| | | | - Felix D Dakora
- Department of Chemistry, Tshwane University of Technology, Arcadia Campus, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
31
|
Muleta A, Tesfaye K, Assefa F, Greenlon A, Riely BK, Carrasquilla-Garcia N, Gai Y, Haileslassie T, Cook DR. Genomic diversity and distribution of Mesorhizobium nodulating chickpea (Cicer arietinum L.) from low pH soils of Ethiopia. Syst Appl Microbiol 2021; 45:126279. [PMID: 34839036 DOI: 10.1016/j.syapm.2021.126279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Chickpea is the third most important grain legume worldwide. This is due in part to its high protein content that results from its ability to acquire bioavailable nitrogen when colonized by diverse, nitrogen fixing Mesorhizobium species. However, the diversity and distribution of mesorhizobia communities may depend on their adaptation to soil conditions. Therefore, this study was initiated in order to isolate and investigate the diversity and taxonomic identities of chickpea-nodulating Mesorhizobium species from low pH soils of Ethiopia. A total of 81 rhizobia strains were isolated from chickpea nodules harvested from low pH soils throughout Ethiopia, and their genomes were sequenced and assembled. Considering a representative set of the best-sequenced 81 genomes, the average sequence depth was 30X, with estimated average genome sizes of approximately 7 Mbp. Annotation of the assembled genome predicted an average of 7,453 protein-coding genes. Concatenation of 400 universal PhyloPhlAn conserved genes present in the genomes of all 81 strains allowed detailed phylogenetic analysis, from which eight well-supported species were identified, including M.opportunistum, M.australicum, Mesorhizobium sp. LSJC280BOO, M.wenxiniae, M.amorphae, M.loti and M.plurifarium, as well as a novel species. Phylogenetic reconstructions based on the symbiosis-related (nodC and nifH) genes were different from the core genes and consistent with horizontal transfer of the symbiotic island. The two major genomic groups, M.plurifarium and M.loti, were widely distributed in almost all the sites. The geographic pattern of genomic diversity indicated there was no relationship between geographic and genetic distance (r = 0.01, p > 0.01). In conclusion, low pH soils in Ethiopia harbored a diverse group of Mesorhizobium species, several of which were not previously known to nodulate chickpea.
Collapse
Affiliation(s)
- Atsede Muleta
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Kassahun Tesfaye
- Institutes of Biotechnology, Addis Ababa University, P.O Box 1176, Addis Ababa, Ethiopia; Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia
| | - Fassil Assefa
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Alex Greenlon
- Department of Plant Pathology, University of California Davis, One Shields Ave, Davis, CA, United States
| | - Brendan K Riely
- Department of Plant Pathology, University of California Davis, One Shields Ave, Davis, CA, United States
| | - Noelia Carrasquilla-Garcia
- Department of Plant Pathology, University of California Davis, One Shields Ave, Davis, CA, United States
| | - Yunpeng Gai
- Department of Plant Pathology, University of California Davis, One Shields Ave, Davis, CA, United States
| | | | - Douglas R Cook
- Department of Plant Pathology, University of California Davis, One Shields Ave, Davis, CA, United States
| |
Collapse
|
32
|
Simunović V. Genomic and molecular evidence reveals novel pathways associated with cell surface polysaccharides in bacteria. FEMS Microbiol Ecol 2021; 97:6355432. [PMID: 34415013 DOI: 10.1093/femsec/fiab119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Amino acid (acyl carrier protein) ligases (AALs) are a relatively new family of bacterial amino acid adenylating enzymes with unknown function(s). Here, genomic enzymology tools that employ sequence similarity networks and genome context analyses were used to hypothesize the metabolic function(s) of AALs. In over 50% of species, aal and its cognate acyl carrier protein (acp) genes, along with three more genes, formed a highly conserved AAL cassette. AAL cassettes were strongly associated with surface polysaccharide gene clusters in Proteobacteria and Actinobacteria, yet were prevalent among soil and rhizosphere-associated α- and β-Proteobacteria, including symbiotic α- and β-rhizobia and some Mycolata. Based on these associations, AAL cassettes were proposed to encode a noncanonical Acp-dependent polysaccharide modification route. Genomic-inferred predictions were substantiated by published experimental evidence, revealing a role for AAL cassettes in biosynthesis of biofilm-forming exopolysaccharide in pathogenic Burkholderia and expression of aal and acp genes in nitrogen-fixing Rhizobium bacteroids. Aal and acp genes were associated with dltBD-like homologs that modify cell wall teichoic acids with d-alanine, including in Paenibacillus and certain other bacteria. Characterization of pathways that involve AAL and Acp may lead to developing new plant and human disease-controlling agents as well as strains with improved nitrogen fixation capacity.
Collapse
|
33
|
Mendoza-Suárez M, Andersen SU, Poole PS, Sánchez-Cañizares C. Competition, Nodule Occupancy, and Persistence of Inoculant Strains: Key Factors in the Rhizobium-Legume Symbioses. FRONTIERS IN PLANT SCIENCE 2021; 12:690567. [PMID: 34489993 PMCID: PMC8416774 DOI: 10.3389/fpls.2021.690567] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Biological nitrogen fixation by Rhizobium-legume symbioses represents an environmentally friendly and inexpensive alternative to the use of chemical nitrogen fertilizers in legume crops. Rhizobial inoculants, applied frequently as biofertilizers, play an important role in sustainable agriculture. However, inoculants often fail to compete for nodule occupancy against native rhizobia with inferior nitrogen-fixing abilities, resulting in low yields. Strains with excellent performance under controlled conditions are typically selected as inoculants, but the rates of nodule occupancy compared to native strains are rarely investigated. Lack of persistence in the field after agricultural cycles, usually due to the transfer of symbiotic genes from the inoculant strain to naturalized populations, also limits the suitability of commercial inoculants. When rhizobial inoculants are based on native strains with a high nitrogen fixation ability, they often have superior performance in the field due to their genetic adaptations to the local environment. Therefore, knowledge from laboratory studies assessing competition and understanding how diverse strains of rhizobia behave, together with assays done under field conditions, may allow us to exploit the effectiveness of native populations selected as elite strains and to breed specific host cultivar-rhizobial strain combinations. Here, we review current knowledge at the molecular level on competition for nodulation and the advances in molecular tools for assessing competitiveness. We then describe ongoing approaches for inoculant development based on native strains and emphasize future perspectives and applications using a multidisciplinary approach to ensure optimal performance of both symbiotic partners.
Collapse
Affiliation(s)
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
34
|
Hernández I, Taulé C, Pérez-Pérez R, Battistoni F, Fabiano E, Rivero D, Nápoles MC. Endophytic rhizobia promote the growth of Cuban rice cultivar. Symbiosis 2021. [DOI: 10.1007/s13199-021-00803-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Zilli JÉ, de Moraes Carvalho CP, de Matos Macedo AV, de Barros Soares LH, Gross E, James EK, Simon MF, de Faria SM. Nodulation of the neotropical genus Calliandra by alpha or betaproteobacterial symbionts depends on the biogeographical origins of the host species. Braz J Microbiol 2021; 52:2153-2168. [PMID: 34245449 DOI: 10.1007/s42770-021-00570-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/01/2021] [Indexed: 11/26/2022] Open
Abstract
The neotropical genus Calliandra is of great importance to ecology and agroforestry, but little is known about its nodulation or its rhizobia. The nodulation of several species from two restricted diversity centres with native/endemic species (Eastern Brazil and North-Central America) and species widespread in South America, as well as their nodule structure and the molecular characterization of their rhizobial symbionts based on phylogeny of the 16S rRNA, recA and nodC gene, is reported herein. Species representative of different regions were grown in Brazilian soil, their nodulation observed, and their symbionts characterized. Calliandra nodules have anatomy that is typical of mimosoid nodules regardless of the microsymbiont type. The rhizobial symbionts differed according to the geographical origin of the species, i.e. Alphaproteobacteria (Rhizobium) were the exclusive symbionts from North-Central America, Betaproteobacteria (Paraburkholderia) from Eastern Brazil, and a mixture of both nodulated the widespread species. The symbiont preferences of Calliandra species are the result of the host co-evolving with the "local" symbiotic bacteria that thrive in the different edaphoclimatic conditions, e.g. the acidic soils of NE Brazil are rich in acid-tolerant Paraburkholderia, whereas those of North-Central America are typically neutral-alkaline and harbour Rhizobium. It is hypothesized that the flexibility of widespread species in symbiont choice has assisted in their wider dispersal across the neotropics.
Collapse
Affiliation(s)
- Jerri Édson Zilli
- Embrapa Agrobiologia, BR 465 km 07, Seropédica, Rio de Janeiro, 23891-000, Brazil.
| | | | | | | | - Eduardo Gross
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, Ilhéus, 45662-900, Bahia, Brazil
| | | | - Marcelo Fragomeni Simon
- Embrapa Recursos Genéticos e Biotecnologia, Cx. Postal 02372, Brasília, DF, 70770-917, Brazil
| | | |
Collapse
|
36
|
Culture-independent assessment of the diazotrophic Bradyrhizobium communities in the Pampa and Atlantic Forest Biomes localities in southern Brazil. Syst Appl Microbiol 2021; 44:126228. [PMID: 34265499 DOI: 10.1016/j.syapm.2021.126228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
The isolation of rhizobial strains from the root and stem nodules remains a commonly used method despite its limitations as it enables the identification of mainly dominant symbiotic groups within rhizobial communities. To overcome these limitations, we used genus-specific nifD primers in a culture-independent assessment of Bradyrhizobium communities inhabiting soils in southern Brazil. The majority of nifD sequences were generated from DNA isolated from tropical-lowland pasture soils, although some soil samples originated from the Campos de Cima da Serra volcanic plateau. In the nifD tree, all the bradyrhizobial sequences comprised 38 clades, including 18 new clades. The sequences generated in this study were resolved into 22 clades and 21 singletons. The nifD bradyrhizobial assemblage contained Azorhizobium and α-proteobacterial methylotrophic genera, suggesting that these genera may have acquired their nif loci from Bradyrhizobium donors. The most common in the lowland pasture soils subclade III.3D branch comprises the isolates of mainly an American origin. On the other hand, subclade III.4, which was earlier detected in Brazil among Bradyrhizobium isolates nodulating native lupins, appears more common in the Campos de Cima da Serra soils. The second-largest group, Clade XXXVIII, has not yet been reported in culture-dependent studies, while another common group called Clade I represents a symbiovar predominating in Australia. The identification of the diverse nifD Clade I haplotypes in the tropical-lowland pastures infested by Australian Acacia spp implies that the introduction of these legumes to southern Brazil has resulted in the dissemination of their bradyrhizobial symbionts.
Collapse
|
37
|
Dias MAM, Bomfim CSG, Rodrigues DR, da Silva AF, Santos JCS, do Nascimento TR, Martins LMV, Dantas BF, Ribeiro PRDA, de Freitas ADS, Fernandes-Júnior PI. Paraburkholderia spp. are the main rhizobial microsymbionts of Mimosa tenuiflora (Willd.) Poir. in soils of the Brazilian tropical dry forests (Caatinga biome). Syst Appl Microbiol 2021; 44:126208. [PMID: 33992956 DOI: 10.1016/j.syapm.2021.126208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
Mimosa tenuiflora (Willd.) Poir. is widespread in southern and central American drylands, but little information is available concerning its associated rhizobia. Therefore, this study aimed to characterize M. tenuiflora rhizobia from soils of the tropical dry forests (Caatinga) in Pernambuco State, Brazil, at the molecular and symbiotic levels. Soil samples of pristine Caatinga areas in four municipalities were used to grow M. tenuiflora. First, the bacteria from root nodules were subjected to nodC/nifH gene amplification, and the bacteria positive for both genes had the 16S rRNA gene sequenced. Then, ten strains were evaluated using recA, gyrB, and nodC gene sequences, and seven of them had their symbiotic efficiency assessed. Thirty-two strains were obtained and 22 of them were nodC/nifH positive. Twenty strains clustered within Paraburkholderia and two within Rhizobium by 16S rRNA gene sequencing. The beta-rhizobia were similar to P. phenoliruptrix (12) and P. diazotrophica (8). Both alpha-rhizobia were closely related to R. miluonense. The recA + gyrB phylogenetic analysis clustered four and five strains within the P. phenoliruptrix and P. diazotrophica branches, respectively, but they were somewhat divergent to the 16S rRNA phylogeny. For Rhizobium sp. ESA 637, the recA + gyrB phylogeny clustered the strain with R. jaguaris. The nodC phylogeny indicated that ESA 626, ESA 629, and ESA 630 probably represented a new symbiovar branch. The inoculation assay showed high symbiotic efficiency for all tested strains. The results indicated high genetic diversity and efficiency of M. tenuiflora rhizobia in Brazilian drylands and included P. phenoliruptrix-like bacteria in the list of efficient beta-rhizobia in the Caatinga biome.
Collapse
Affiliation(s)
- Marcos André Moura Dias
- Universidade Federal do Vale do São Francisco (Univasf), Colegiado de Farmácia, Petrolina, PE, Brazil
| | | | | | - Aleksandro Ferreira da Silva
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Agronomia, Recife, PE, Brazil; Faculdade UniBras, Departamento de Agronomia, Juazeiro, BA, Brazil
| | | | - Tailane Ribeiro do Nascimento
- Universidade do Estado da Bahia (UNEB), Departamento de Tecnologia e Ciências Sociais, R. Edgard Chastinet, s/n, Juazeiro, BA, Brazil
| | - Lindete Míria Vieira Martins
- Universidade do Estado da Bahia (UNEB), Departamento de Tecnologia e Ciências Sociais, R. Edgard Chastinet, s/n, Juazeiro, BA, Brazil
| | | | - Paula Rose de Almeida Ribeiro
- Embrapa Semiárido, Petrolina, PE, Brazil; Fundação de Amparo à Pesquisa do Estado de Pernambuco (Facepe), Recife, PE, Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, DF, Brazil
| | | | | |
Collapse
|
38
|
Efstathiadou E, Ntatsi G, Savvas D, Tampakaki AP. Genetic characterization at the species and symbiovar level of indigenous rhizobial isolates nodulating Phaseolus vulgaris in Greece. Sci Rep 2021; 11:8674. [PMID: 33883620 PMCID: PMC8060271 DOI: 10.1038/s41598-021-88051-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Phaseolus vulgaris (L.), commonly known as bean or common bean, is considered a promiscuous legume host since it forms nodules with diverse rhizobial species and symbiovars. Most of the common bean nodulating rhizobia are mainly affiliated to the genus Rhizobium, though strains belonging to Ensifer, Pararhizobium, Mesorhizobium, Bradyrhizobium, and Burkholderia have also been reported. This is the first report on the characterization of bean-nodulating rhizobia at the species and symbiovar level in Greece. The goals of this research were to isolate and characterize rhizobia nodulating local common bean genotypes grown in five different edaphoclimatic regions of Greece with no rhizobial inoculation history. The genetic diversity of the rhizobial isolates was assessed by BOX-PCR and the phylogenetic affiliation was assessed by multilocus sequence analysis (MLSA) of housekeeping and symbiosis-related genes. A total of fifty fast-growing rhizobial strains were isolated and representative isolates with distinct BOX-PCR fingerpriniting patterns were subjected to phylogenetic analysis. The strains were closely related to R. anhuiense, R. azibense, R. hidalgonense, R. sophoriradicis, and to a putative new genospecies which is provisionally named as Rhizobium sp. I. Most strains belonged to symbiovar phaseoli carrying the α-, γ-a and γ-b alleles of nodC gene, while some of them belonged to symbiovar gallicum. To the best of our knowledge, it is the first time that strains assigned to R. sophoriradicis and harbored the γ-b allele were found in European soils. All strains were able to re-nodulate their original host, indicating that they are true microsymbionts of common bean.
Collapse
Affiliation(s)
- Evdoxia Efstathiadou
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece
| | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece
| | - Anastasia P Tampakaki
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855, Athens, Greece.
| |
Collapse
|
39
|
Gunnabo AH, van Heerwaarden J, Geurts R, Wolde-Meskel E, Degefu T, Giller KE. Phylogeography and Symbiotic Effectiveness of Rhizobia Nodulating Chickpea (Cicer arietinum L.) in Ethiopia. MICROBIAL ECOLOGY 2021; 81:703-716. [PMID: 33098438 PMCID: PMC7982387 DOI: 10.1007/s00248-020-01620-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Chickpea (Cicer arietinum L.) used to be considered a restrictive host that nodulated and fixed nitrogen only with Mesorhizobium ciceri and M. mediterraneum. Recent analysis revealed that chickpea can also establish effective symbioses with strains of several other Mesorhizobium species such as M. loti, M. haukuii, M. amorphae, M. muleiense, etc. These strains vary in their nitrogen fixation potential inviting further exploration. We characterized newly collected mesorhizobial strains isolated from various locations in Ethiopia to evaluate genetic diversity, biogeographic structure and symbiotic effectiveness. Symbiotic effectiveness was evaluated in Leonard Jars using a locally released chickpea cultivar "Nattoli". Most of the new isolates belonged to a clade related to M. plurifarium, with very few sequence differences, while the total collection of strains contained three additional mesorhizobial genospecies associated with M. ciceri, M. abyssinicae and an unidentified Mesorhizobium species isolated from a wild host in Eritrea. The four genospecies identified represented a subset of the eight major Mesorhizobium clades recently reported for Ethiopia based on metagenomic data. All Ethiopian strains had nearly identical symbiotic genes that grouped them in a single cluster with M. ciceri, M. mediterraneum and M. muleiense, but not with M. plurifarium. Some phylogeographic structure was observed, with elevation and geography explaining some of the genetic differences among strains, but the relation between genetic identity and symbiotic effectiveness was observed to be weak.
Collapse
Affiliation(s)
- A H Gunnabo
- Plant Production Systems Group, Wageningen University and Research, Wageningen, The Netherlands.
| | - J van Heerwaarden
- Plant Production Systems Group, Wageningen University and Research, Wageningen, The Netherlands.
| | - R Geurts
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University, Wageningen, The Netherlands
| | - E Wolde-Meskel
- World Agroforestry Centre (ICRAF), Addis Ababa, Ethiopia
| | - T Degefu
- International Crops Research Institute for the Semi-Arid Tropics, Addis Ababa, Ethiopia
| | - K E Giller
- Plant Production Systems Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
40
|
The leguminous trees Vachellia seyal (Del.) and Prosopis juliflora (Swartz) DC and their association with rhizobial strains from the root-influence zone of the grass Sporobolus robustus Kunth. Symbiosis 2021. [DOI: 10.1007/s13199-021-00763-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Zhang J, Peng S, Andrews M, Liu C, Shang Y, Li S, Wang E, Zhang X. Rhizobium changzhiense sp. nov., isolated from effective nodules of Vicia sativa L. in North China. Int J Syst Evol Microbiol 2021; 71. [PMID: 33661090 DOI: 10.1099/ijsem.0.004724] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three fast-growing rhizobial strains isolated from effective nodules of common vetch (Vicia sativa L.) were characterized using a polyphasic approach. All three strains were assigned to the genus Rhizobium on the basis of the results of 16S rRNA gene sequence analysis. Phylogenetic analysis based on concatenated atpD-recA genes separated the strains into a distinct lineage represented by WYCCWR 11279T, which showed average nucleotide identity values of 95.40 and 93.61 % with the most similar phylogenetic type strains of Rhizobium sophorae CCBAU 03386T and Rhizobium laguerreae FB TT, respectively. The digital DNA-DNA hybridization relatedness values between WYCCWR 11279T and the closest related type strains were less than 70 %. Therefore, a novel rhizobial species is proposed, Rhizobium changzhiense sp. nov., and strain WYCCWR 11279T (=HAMBI 3709T=LMG 31534T) is designated as the type strain for the novel species.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, PR China.,Collaborative Innovation Center for Food Production and Safety of Henan province, Zhengzhou 450002, Henan Province, PR China
| | - Shanshan Peng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, PR China
| | - Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Chunzeng Liu
- Institute of Plant Nutrition and Resource Environment, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan Province, PR China
| | - Yimin Shang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, PR China
| | - Shuo Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, PR China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11340, Ciudad de México, Mexico
| | - Xiaoxia Zhang
- Agricultural Cultural Collection of China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100080, PR China
| |
Collapse
|
42
|
Hakim S, Imran A, Mirza MS. Phylogenetic diversity analysis reveals Bradyrhizobium yuanmingense and Ensifer aridi as major symbionts of mung bean (Vigna radiata L.) in Pakistan. Braz J Microbiol 2021; 52:311-324. [PMID: 33141350 PMCID: PMC7966693 DOI: 10.1007/s42770-020-00397-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/27/2020] [Indexed: 11/26/2022] Open
Abstract
The present study was carried out to evaluate the diversity of rhizobia associated with nodules of mung bean in Pakistan, because this information is necessary for inoculum development. Based on sequence analysis of 16S rRNA gene of thirty-one bacteria, 11 were assigned to genus Bradyrhizobium, 17 to Ensifer, and 3 to Rhizobium. Phylogenetic analyses on the basis of 16S-23S ITS region, atpD, recA, nifH, and nodA of representative strains revealed that B. yuanmingense is the predominant species distributed throughout different mung bean-growing areas. Among the fast-growing rhizobia, Ensifer aridi was predominant in Faisalabad, Layyah, and Rawalpindi, while E. meliloti in Thal desert. Sequence variations and phylogeny of nifH and nodA genes suggested that these genes might have been co-evolved with the housekeeping genes and maintained by vertical gene transfer in rhizobia detected in the present study. Host infectivity assay revealed the successful nodulation of host by rhizobia related to genera Bradyrhizobium, Ensifer and Rhizobium. Among all, Bradyrhizobium and Ensifer spp. inoculation exhibited a significantly higher number of nodules (11-34 nodules plant-1) and nitrogenase activity (nodule ARA 60-110 μmol g-1 h-1). Contrary to the previous studies, our data reveal that B. yuanmingense and E. aridi are predominant species forming effective nodules in mung bean in Pakistan. Furthermore, to the best of our knowledge, this is the first report showing the effective symbiosis of E. aridi, E. meliloti, and Rhizobium pusense with mung bean. The diversity of rhizobia in different habitats revealed in the present study will contribute towards designing site-specific inocula for mung bean.
Collapse
Affiliation(s)
- Sughra Hakim
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan
| | - M Sajjad Mirza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan.
| |
Collapse
|
43
|
Abstract
Rhizobia are a phylogenetically diverse group of soil bacteria that engage in mutualistic interactions with legume plants. Although specifics of the symbioses differ between strains and plants, all symbioses ultimately result in the formation of specialized root nodule organs which host the nitrogen-fixing microsymbionts called bacteroids. Inside nodules, bacteroids encounter unique conditions that necessitate global reprogramming of physiological processes and rerouting of their metabolism. Decades of research have addressed these questions using genetics, omics approaches, and more recently computational modelling. Here we discuss the common adaptations of rhizobia to the nodule environment that define the core principles of bacteroid functioning. All bacteroids are growth-arrested and perform energy-intensive nitrogen fixation fueled by plant-provided C4-dicarboxylates at nanomolar oxygen levels. At the same time, bacteroids are subject to host control and sanctioning that ultimately determine their fitness and have fundamental importance for the evolution of a stable mutualistic relationship.
Collapse
|
44
|
Bünger W, Sarkar A, Grönemeyer JL, Zielinski J, Revermann R, Hurek T, Reinhold-Hurek B. Root Nodule Rhizobia From Undomesticated Shrubs of the Dry Woodlands of Southern Africa Can Nodulate Angolan Teak Pterocarpus angolensis, an Important Source of Timber. Front Microbiol 2021; 12:611704. [PMID: 33584615 PMCID: PMC7876412 DOI: 10.3389/fmicb.2021.611704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
Pterocarpus angolensis, a leguminous tree native to the dry woodlands of Southern Africa, provides valuable timber, but is threatened by land conversion and overharvesting while showing limited natural regeneration. Nitrogen-fixing root nodule symbionts that could improve establishment of young seedlings have not yet been described. Therefore, we investigated the ability of P. angolensis to form nodules with a diverse range of rhizobia. In drought-prone areas under climate change with higher temperatures, inoculants that are heat-tolerant and adapted to these conditions are likely to be of advantage. Sources of bacterial isolates were roots of P. angolensis from nurseries in the Kavango region, other shrubs from this area growing near Pterocarpus such as Indigofera rautanenii, Desmodium barbatum, Chamaecrista sp., or shrubs from drought-prone areas in Namaqualand (Wiborgia monoptera, Leobordea digitata) or Kalahari (Indigofera alternans). Only slight protrusions were observed on P. angolensis roots, from which a non-nodulating Microbacterium sp. was isolated. Rhizobia that were isolated from nodules of other shrubs were affiliated to Bradyrhizobium ripae WR4T, Bradyrhizobium spp. (WR23/WR74/WR93/WR96), or Ensifer/Mesorhizobium (WR41/WR52). As many plant growth-promoting rhizobacteria (PGPR), nodule isolates produced siderophores and solubilized phosphate. Among them, only the Bradyrhizobium strains nodulated P. angolensis under controlled conditions in the laboratory. Isolates were further characterized by multilocus sequence analysis and were found to be distant from known Bradyrhizobium species. Among additional reference species tested for nodulation on P. angolensis, Bradyrhizobium vignae 7-2T and Bradyrhizobium namibiense 5-10T from the Kavango region of Namibia as well as Bradyrhizobium elkanii LMG6234T and Bradyrhizobium yuanmingense LMG21728T induced nitrogen-fixing nodules, while Bradyrhizobium diazoefficiens USDA110T and Bradyrhizobium tropiciagri SEMIA6148T did not. This suggests a broad microsymbiont range from Bradyrhizobium japonicum and B. elkanii lineages. Phylogenetic analysis of nodC genes indicated that nodulating bradyrhizobia did not belong to a specific symbiovar. Also, for I. rautanenii and Wiborgia, nodule isolates B. ripae WR4T or Mesorhizobium sp. WR52, respectively, were authenticated. Characterization of symbionts inducing effective root nodules in P. angolensis and other shrubs from Subsahara Africa (SSA) give insights in their symbiotic partners for the first time and might help in future to develop bioinoculants for young seedlings in nurseries, and for reforestation efforts in Southern Africa.
Collapse
Affiliation(s)
- Wiebke Bünger
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), Faculty Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Abhijit Sarkar
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), Faculty Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Jann Lasse Grönemeyer
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), Faculty Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Janina Zielinski
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), Faculty Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Rasmus Revermann
- Department of Biodiversity, Ecology and Evolution of Plants, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
- Faculty of Natural Resources and Spatial Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), Faculty Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, CBIB (Center for Biomolecular Interactions Bremen), Faculty Biology and Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|
45
|
Epstein B, Tiffin P. Comparative genomics reveals high rates of horizontal transfer and strong purifying selection on rhizobial symbiosis genes. Proc Biol Sci 2021; 288:20201804. [PMID: 33402066 DOI: 10.1098/rspb.2020.1804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Horizontal transfer (HT) alters the repertoire of symbiosis genes in rhizobial genomes and may play an important role in the on-going evolution of the rhizobia-legume symbiosis. To gain insight into the extent of HT of symbiosis genes with different functional roles (nodulation, N-fixation, host benefit and rhizobial fitness), we conducted comparative genomic and selection analyses of the full-genome sequences from 27 rhizobial genomes. We find that symbiosis genes experience high rates of HT among rhizobial lineages but also bear signatures of purifying selection (low Ka : Ks). HT and purifying selection appear to be particularly strong in genes involved in initiating the symbiosis (e.g. nodulation) and in genome-wide association candidates for mediating benefits provided to the host. These patterns are consistent with rhizobia adapting to the host environment through the loss and gain of symbiosis genes, but not with host-imposed positive selection driving divergence of symbiosis genes through recurring bouts of positive selection.
Collapse
Affiliation(s)
- Brendan Epstein
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, USA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
46
|
Youseif SH, Abd El-Megeed FH, Mohamed AH, Ageez A, Veliz E, Martínez-Romero E. Diverse Rhizobium strains isolated from root nodules of Trifolium alexandrinum in Egypt and symbiovars. Syst Appl Microbiol 2020; 44:126156. [PMID: 33232849 DOI: 10.1016/j.syapm.2020.126156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022]
Abstract
Berseem clover (T. alexandrinum) is the main forage legume crop used as animal feed in Egypt. Here, eighty rhizobial isolates were isolated from root nodules of berseem clover grown in different regions in Egypt and were grouped by RFLP-16S rRNA ribotyping. Representative isolates were characterized using phylogenetic analyses of the 16S rRNA, rpoB, glnA, pgi, and nodC genes. We also investigated the performance of these isolates using phenotypic tests and nitrogen fixation efficiency assays. The majority of strains (<90%) were closely related to Rhizobium aegyptiacum and Rhizobium aethiopicum and of the remaining strains, six belonged to the Rhizobium leguminosarum genospecies complex and only one strain was assigned to Agrobacterium fabacearum. Despite their heterogeneous chromosomal background, most of the strains shared nodC gene alleles corresponding to symbiovar trifolii. Some of the strains closely affiliated to R. aegyptiacum and R. aethiopicum had superior nodulation and nitrogen fixation capabilities in berseem clover, compared to the commercial inoculant (Okadein®) and N-added treatments. R. leguminosarum strain NGB-CR 17 that harbored a nodC allele typical of symbiovar viciae, was also able to form an effective symbiosis with clover. Two strains with nodC alleles of symbiovar trifolii, R. aegyptiacum strains NGB-CR 129 and 136, were capable of forming effective nodules in Phaseolus vulgaris in axenic greenhouse conditions. This adds the symbiovar trifolii which is well-established in the Egyptian soils to the list of symbiovars that form nodules in P. vulgaris.
Collapse
Affiliation(s)
- Sameh H Youseif
- Department of Microbial Genetic Resources, National Gene Bank, Agricultural Research Center (ARC), Giza 12619, Egypt.
| | - Fayrouz H Abd El-Megeed
- Department of Microbial Genetic Resources, National Gene Bank, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Akram H Mohamed
- Department of Microbial Genetic Resources, National Gene Bank, Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Amr Ageez
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; Faculty of Biotechnology, MSA University, 6 October City, Egypt
| | - Esteban Veliz
- Department of Plant Biology, University of California, Davis, Life Sciences Addition, 1 Shields Ave., Davis, CA, 95616, USA
| | - Esperanza Martínez-Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, UNAM Cuernavaca, Morelos, Mexico
| |
Collapse
|
47
|
Liu X, You S, Liu H, Yuan B, Wang H, James EK, Wang F, Cao W, Liu ZK. Diversity and Geographic Distribution of Microsymbionts Associated With Invasive Mimosa Species in Southern China. Front Microbiol 2020; 11:563389. [PMID: 33250864 PMCID: PMC7673401 DOI: 10.3389/fmicb.2020.563389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/11/2020] [Indexed: 11/24/2022] Open
Abstract
In order to investigated diversity and geographic distribitution of rhizobia associated with invasive Mimosa species, Mimosa nodules and soils around the plants were sampled from five provinces in southern China. In total, 361 isolates were obtained from Mimosa pudica and Mimosa diplotricha in 25 locations. A multi-locus sequence analysis (MLSA) including 16S rRNA, atpD, dnaK, glnA, gyrB, and recA identified the isolates into eight genospecies corresponding to Paraburkhleria mimosarum, Paraburkholderia phymatum, Paraburkholeria carbensis, Cupriavidus taiwanensis, Cupriavidus sp., Rhizobium altiplani, Rhizobium mesoamericanum, and Rhizobium etli. The majority of the isolates were Cupriavidus (62.6%), followed by Paraburkholderia (33.5%) and Rhizobium (2.9%). Cupriavidus strains were more predominant in nodules of M. diplotricha (76.2) than in M. pudica (59.9%), and the distribution of P. phymatum in those two plant species was reverse (3.4:18.2%). Four symbiotypes were defined among the isolates based upon the phylogeny of nodA-nifH genes, represented by P. mimosarum, P. phymatum–P. caribensis, Cupriavidus spp., and Rhizobium spp. The species affiliation and the symbiotype division among the isolates demonstrated the multiple origins of Mimosa rhizobia in China: most were similar to those found in the original centers of Mimosa plants, but Cupriavidus sp. might have a local origin. The unbalanced distribution of symbionts between the two Mimosa species might be related to the soil pH, organic matter and available nitrogen; Cupriavidus spp. generally dominated most of the soils colonized by Mimosa in this study, but it had a particular preference for neutral-alkaline soils with low fertility whereas. While Paraburkholderia spp. preferred more acidic and fertile soils. The Rhizobium spp. tended to prefer neutral–acidic soils with high fertility soils.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science/Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Shenghao You
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science/Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Huajie Liu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science/Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Baojuan Yuan
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science/Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Haoyu Wang
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science/Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee, United Kingdom
| | - Fang Wang
- Key Laboratory of State Forestry Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
| | - Weidong Cao
- Institute of Agricultural Resources and Regional Planning of CAAS, Beijing, China
| | - Zhong Kuan Liu
- Institute of Agro-resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|
48
|
Cabral Michel D, Martins da Costa E, Azarias Guimarães A, Soares de Carvalho T, Santos de Castro Caputo P, Willems A, de Souza Moreira FM. Bradyrhizobium campsiandrae sp. nov., a nitrogen-fixing bacterial strain isolated from a native leguminous tree from the Amazon adapted to flooded conditions. Arch Microbiol 2020; 203:233-240. [PMID: 32857180 DOI: 10.1007/s00203-020-02022-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/23/2020] [Accepted: 08/13/2020] [Indexed: 01/05/2023]
Abstract
The nitrogen-fixing bacterial strain UFLA 01-1174T was isolated from nodules of Campsiandra laurilifolia Benth. originating from the Amazon region, Brazil. Its taxonomic position was defined using a polyphasic approach. Analysis of the 16S rRNA gene placed the strain in the Bradyrhizobium genus, the closest species being B. guangdongense CCBAU 51649T and B. guangzhouense CCBAU 51670T, both with 99.8% similarity. Multilocus sequence analysis (MLSA) of recA, gyrB, glnII, rpoB, atpD, and dnaK indicated that UFLA 01-1174T is a new species, most closely related to B. stylosanthis BR 446T (94.4%) and B. manausense BR 3351T (93.7%). Average nucleotide identity (ANI) differentiated UFLA 01-1174T from the closest species with values lower than 90%. The G + C content in the DNA of UFLA 01-1174T is 63.6 mol%. Based on this data, we conclude that the strain represents a new species. The name proposed is Bradyrhizobium campsiandrae, with UFLA 01-1174T (= INPA 394BT = LMG 10099T) as type strain.
Collapse
Affiliation(s)
- Daniele Cabral Michel
- Setor de Biologia, Microbiologia e Processos Biológicos Do Solo, Departamento de Ciência Do Solo, Universidade Federal de Lavras, Campus UFLA, Lavras, Minas Gerais, 37200-900, Brazil
| | - Elaine Martins da Costa
- Universidade Federal Do Piauí, Campus Professora Cinobelina Elvas, Bom Jesus, Piauí, 64900-000, Brazil
| | - Amanda Azarias Guimarães
- Setor de Biologia, Microbiologia e Processos Biológicos Do Solo, Departamento de Ciência Do Solo, Universidade Federal de Lavras, Campus UFLA, Lavras, Minas Gerais, 37200-900, Brazil
| | - Teotonio Soares de Carvalho
- Setor de Biologia, Microbiologia e Processos Biológicos Do Solo, Departamento de Ciência Do Solo, Universidade Federal de Lavras, Campus UFLA, Lavras, Minas Gerais, 37200-900, Brazil
| | - Polyane Santos de Castro Caputo
- Setor de Biologia, Microbiologia e Processos Biológicos Do Solo, Departamento de Ciência Do Solo, Universidade Federal de Lavras, Campus UFLA, Lavras, Minas Gerais, 37200-900, Brazil
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Fatima Maria de Souza Moreira
- Setor de Biologia, Microbiologia e Processos Biológicos Do Solo, Departamento de Ciência Do Solo, Universidade Federal de Lavras, Campus UFLA, Lavras, Minas Gerais, 37200-900, Brazil.
| |
Collapse
|
49
|
Bañuelos-Vazquez LA, Cazares D, Rodríguez S, Cervantes-De la Luz L, Sánchez-López R, Castellani LG, Tejerizo GT, Brom S. Transfer of the Symbiotic Plasmid of Rhizobium etli CFN42 to Endophytic Bacteria Inside Nodules. Front Microbiol 2020; 11:1752. [PMID: 32849381 PMCID: PMC7403402 DOI: 10.3389/fmicb.2020.01752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/27/2022] Open
Abstract
Conjugative transfer is one of the mechanisms allowing diversification and evolution of bacteria. Rhizobium etli CFN42 is a bacterial strain whose habitat is the rhizosphere and is able to form nodules as a result of the nitrogen-fixing symbiotic relationship it may establish with the roots of Phaseolus vulgaris. R. etli CFN42 contains one chromosome and six large plasmids (pRet42a - pRet42f). Most of the genetic information involved in the establishment of the symbiosis is localized on plasmid pRet42d, named as the symbiotic plasmid (pSym). This plasmid is able to perform conjugation, using pSym encoded transfer genes controlled by the RctA/RctB system. Another plasmid of CFN42, pRet42a, has been shown to perform conjugative transfer not only in vitro, but also on the surface of roots and inside nodules, using other rhizobia as recipients. In addition to the rhizobia involved in the formation of nodules, these structures have been shown to contain endophytic bacteria from different genera and species. In this work, we have explored the conjugative transfer of the pSym (pRet42d) from R. etli CFN42 to endophytic bacteria as putative recipients, using as donor a CFN42 derivative labeled with GFP in the pRet42d and RFP in the chromosome. We were able to isolate some transconjugants, which inherit the GFP, but not the RFP marker. Some of them were identified, analyzed and evaluated for their ability to nodulate. We found transconjugants from genera such as Stenotrophomonas, Achromobacter, and Bacillus, among others. Although all the transconjugants carried the GFP marker, and nod, fix, and nif genes from pRet42d, not all were able to nodulate. Ultrastructure microscopy analysis showed some differences in the structure of the nodules of one of the transconjugants. A replicon of the size of pRet42d (371 Kb) could not be visualized in the transconjugants, suggesting that the pSym or a segment of the plasmid is integrated in the chromosome of the recipients. These findings strengthen the proposal that nodules constitute a propitious environment for exchange of genetic information among bacteria, in addition to their function as structures where nitrogen fixation and assimilation takes place.
Collapse
Affiliation(s)
- Luis Alfredo Bañuelos-Vazquez
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Daniel Cazares
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Susana Rodríguez
- Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Laura Cervantes-De la Luz
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Rosana Sánchez-López
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lucas G. Castellani
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM) – CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM) – CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
50
|
Zhang J, Shang Y, Liu C, Brunel B, Wang E, Li S, Peng S, Guo C, Chen W. Mesorhizobium jarvisii is a dominant and widespread species symbiotically efficient on Astragalus sinicus L. in the Southwest of China. Syst Appl Microbiol 2020; 43:126102. [PMID: 32847794 DOI: 10.1016/j.syapm.2020.126102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/18/2022]
Abstract
In order to identify rhizobia of Astragalus sinicus L. and estimate their geographic distribution in the Southwest China, native rhizobia nodulating A. sinicus were isolated and their genetic diversity were studied at 13 sites cultivated in four Chinese provinces. A total of 451 rhizobial isolates were trapped with A. sinicus plants from soils and classified into 8 different genotypes defined by PCR-based restriction fragment length polymorphism (RFLP) of 16S-23S rRNA intergenic spacer (IGS). Twenty-one representative strains were further identified into three defined Mesorhizobium species by phylogenetic analyses of 16S rRNA genes and housekeeping genes (glnII and atpD). M. jarvisii was dominant accounting for 76.3% of the total isolates, 22.8% of the isolates were identified as M. huakuii and five strains belonged to M. qingshengii. All representatives were assigned to the symbiovar astragali by sharing high nodC sequence similarities of more than 99%. Furthermore, the biogeography distribution of these rhizobial genotypes and species was mainly affected by contents of available phosphorus, available potassium, total salts and pH in soils. The most remarkable point was the identification of M. jarvisii as a widespread and predominant species of A. sinicus in southwest of China. These results revealed a novel geographic pattern of rhizobia associated with A. sinicus in China.
Collapse
MESH Headings
- Astragalus Plant/microbiology
- Astragalus Plant/physiology
- China
- DNA, Bacterial/genetics
- Genes, Bacterial
- Genes, rRNA
- Genetic Variation
- Mesorhizobium/classification
- Mesorhizobium/genetics
- Mesorhizobium/isolation & purification
- Mesorhizobium/physiology
- Phylogeny
- Plant Root Nodulation
- Polymorphism, Restriction Fragment Length
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- Root Nodules, Plant/microbiology
- Soil/chemistry
- Soil Microbiology
- Symbiosis/genetics
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, PR China; Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, Henan Province, PR China.
| | - Yimin Shang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, PR China
| | - Chunzeng Liu
- Institute of Plant Nutrition and Resource Environment, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan Province, PR China
| | - Brigitte Brunel
- LSTM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11340, Ciudad de México, Mexico
| | - Shuo Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, PR China
| | - Shanshan Peng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, PR China
| | - Chen Guo
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, PR China; Research and Innovation Center of Chunlun Group, Fuzhou, 350007, PR China
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, Beijing 100193, PR China; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, 100193, PR China
| |
Collapse
|