1
|
Donzella L, Sousa MJ, Morrissey JP. Evolution and functional diversification of yeast sugar transporters. Essays Biochem 2023; 67:811-827. [PMID: 36928992 PMCID: PMC10500205 DOI: 10.1042/ebc20220233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
While simple sugars such as monosaccharides and disaccharide are the typical carbon source for most yeasts, whether a species can grow on a particular sugar is generally a consequence of presence or absence of a suitable transporter to enable its uptake. The most common transporters that mediate sugar import in yeasts belong to the major facilitator superfamily (MFS). Some of these, for example the Saccharomyces cerevisiae Hxt proteins have been extensively studied, but detailed information on many others is sparce. In part, this is because there are many lineages of MFS transporters that are either absent from, or poorly represented in, the model S. cerevisiae, which actually has quite a restricted substrate range. It is important to address this knowledge gap to gain better understanding of the evolution of yeasts and to take advantage of sugar transporters to exploit or engineer yeasts for biotechnological applications. This article examines the full repertoire of MFS proteins in representative budding yeasts (Saccharomycotina). A comprehensive analysis of 139 putative sugar transporters retrieved from 10 complete genomes sheds new light on the diversity and evolution of this family. Using the phylogenetic lens, it is apparent that proteins have often been misassigned putative functions and this can now be corrected. It is also often seen that patterns of expansion of particular genes reflects the differential importance of transport of specific sugars (and related molecules) in different yeasts, and this knowledge also provides an improved resource for the selection or design of tailored transporters.
Collapse
Affiliation(s)
- Lorena Donzella
- School of Microbiology, Environmental Research Institute, APC Microbiome Ireland, SUSFERM Research Centre, University College Cork, T12 K8AF, Cork, Ireland
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Braga, Portugal
| | - Maria João Sousa
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), University of Minho, Braga, Portugal
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute, APC Microbiome Ireland, SUSFERM Research Centre, University College Cork, T12 K8AF, Cork, Ireland
| |
Collapse
|
2
|
Abstract
Yeast species in the Wickerhamiella and Starmerella genera (W/S clade) thrive in the sugar-rich floral niche. We have previously shown that species belonging to this clade harbor an unparalleled number of genes of bacterial origin, among which is the SUC2 gene, encoding a sucrose-hydrolyzing enzyme. In this study, we used complementary in silico and experimental approaches to examine sucrose utilization in a broader cohort of species representing extant diversity in the W/S clade. Distinct strategies and modes of sucrose assimilation were unveiled, involving either extracellular sucrose hydrolysis through secreted bacterial Suc2 or intracellular assimilation using broad-substrate-range α-glucoside/H+ symporters and α-glucosidases. The intracellular pathway is encoded in two types of gene clusters reminiscent of the MAL clusters in Saccharomyces cerevisiae, where they are involved in maltose utilization. The genes composing each of the two types of MAL clusters found in the W/S clade have disparate evolutionary histories, suggesting that they formed de novo. Both transporters and glucosidases were shown to be functional and additionally involved in the metabolization of other disaccharides, such as maltose and melezitose. In one Wickerhamiella species lacking the α-glucoside transporter, maltose assimilation is accomplished extracellularly, an attribute which has been rarely observed in fungi. Sucrose assimilation in Wickerhamiella generally escaped both glucose repression and the need for an activator and is thus essentially constitutive, which is consistent with the abundance of both glucose and sucrose in the floral niche. The notable plasticity associated with disaccharide utilization in the W/S clade is discussed in the context of ecological implications and energy metabolism. IMPORTANCE Microbes usually have flexible metabolic capabilities and are able to use different compounds to meet their needs. The yeasts belonging to the Wickerhamiella and Starmerella genera (forming the so-called W/S clade) are usually found in flowers or insects that visit flowers and are known for having acquired many genes from bacteria by a process called horizontal gene transfer. One such gene, dubbed SUC2, is used to assimilate sucrose, which is one of the most abundant sugars in floral nectar. Here, we show that different lineages within the W/S clade used different solutions for sucrose utilization that dispensed SUC2 and differed in their energy requirements, in their capacity to scavenge small amounts of sucrose from the environment, and in the potential for sharing this resource with other microbial species. We posit that this plasticity is possibly dictated by adaptation to the specific requirements of each species.
Collapse
|
3
|
Silva M, Pontes A, Franco-Duarte R, Soares P, Sampaio JP, Sousa MJ, Brito PH. A glimpse at an early stage of microbe domestication revealed in the variable genome of Torulaspora delbrueckii, an emergent industrial yeast. Mol Ecol 2022; 32:2396-2412. [PMID: 35298044 DOI: 10.1111/mec.16428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
Microbe domestication has a major applied relevance but is still poorly understood from an evolutionary perspective. The yeast Torulaspora delbrueckii is gaining importance for biotechnology but little is known about its population structure, variation in gene content, or possible domestication routes. Here, we show that T. delbrueckii is composed of five major clades. Among the three European clades, a lineage associated with the wild arboreal niche is sister to the two other lineages that are linked with anthropic environments, one to wine fermentations and the other to diverse sources including dairy products and bread dough (Mix- Anthropic clade). Using 64 genomes we assembled the pangenome and the variable genome of T. delbrueckii. A comparison with Saccharomyces cerevisiae indicated that the weight of the variable genome in the pangenome of T. delbrueckii is considerably smaller. An association of gene content and ecology supported the hypothesis that the Mix - Anthropic clade has the most specialized genome and indicated that some of the exclusive genes were implicated in galactose and maltose utilization. More detailed analyses traced the acquisition of a cluster of GAL genes in strains associated with dairy products and the expansion and functional diversification of MAL genes in strains isolated from bread dough. Contrary to S. cerevisiae, domestication in T. delbrueckii is not primarily driven by alcoholic fermentation but rather by adaptation to dairy and bread-production niches. This study expands our views on the processes of microbe domestication and on the trajectories leading to adaptation to anthropic niches.
Collapse
Affiliation(s)
- Margarida Silva
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Ana Pontes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Ricardo Franco-Duarte
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Pedro Soares
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - José Paulo Sampaio
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Maria João Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Patrícia H Brito
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| |
Collapse
|
4
|
Structural Insight into a Yeast Maltase-The BaAG2 from Blastobotrys adeninivorans with Transglycosylating Activity. J Fungi (Basel) 2021; 7:jof7100816. [PMID: 34682239 PMCID: PMC8539097 DOI: 10.3390/jof7100816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
An early-diverged yeast, Blastobotrys (Arxula) adeninivorans (Ba), has biotechnological potential due to nutritional versatility, temperature tolerance, and production of technologically applicable enzymes. We have biochemically characterized from the Ba type strain (CBS 8244) the GH13-family maltase BaAG2 with efficient transglycosylation activity on maltose. In the current study, transglycosylation of sucrose was studied in detail. The chemical entities of sucrose-derived oligosaccharides were determined using nuclear magnetic resonance. Several potentially prebiotic oligosaccharides with α-1,1, α-1,3, α-1,4, and α-1,6 linkages were disclosed among the products. Trisaccharides isomelezitose, erlose, and theanderose, and disaccharides maltulose and trehalulose were dominant transglycosylation products. To date no structure for yeast maltase has been determined. Structures of the BaAG2 with acarbose and glucose in the active center were solved at 2.12 and 2.13 Å resolution, respectively. BaAG2 exhibited a catalytic domain with a (β/α)8-barrel fold and Asp216, Glu274, and Asp348 as the catalytic triad. The fairly wide active site cleft contained water channels mediating substrate hydrolysis. Next to the substrate-binding pocket an enlarged space for potential binding of transglycosylation acceptors was identified. The involvement of a Glu (Glu309) at subsite +2 and an Arg (Arg233) at subsite +3 in substrate binding was shown for the first time for α-glucosidases.
Collapse
|
5
|
Venkatesh A, Murray AL, Coughlan AY, Wolfe KH. Giant GAL gene clusters for the melibiose-galactose pathway in Torulaspora. Yeast 2021; 38:117-126. [PMID: 33141945 PMCID: PMC7898345 DOI: 10.1002/yea.3532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
In many yeast species, the three genes at the centre of the galactose catabolism pathway, GAL1, GAL10 and GAL7, are neighbours in the genome and form a metabolic gene cluster. We report here that some yeast strains in the genus Torulaspora have much larger GAL clusters that include genes for melibiase (MEL1), galactose permease (GAL2), glucose transporter (HGT1), phosphoglucomutase (PGM1) and the transcription factor GAL4, in addition to GAL1, GAL10, and GAL7. Together, these eight genes encode almost all the steps in the pathway for catabolism of extracellular melibiose (a disaccharide of galactose and glucose). We show that a progenitor 5-gene cluster containing GAL 7-1-10-4-2 was likely present in the common ancestor of Torulaspora and Zygotorulaspora. It added PGM1 and MEL1 in the ancestor of most Torulaspora species. It underwent further expansion in the T. pretoriensis clade, involving the fusion of three progenitor clusters in tandem and the gain of HGT1. These giant GAL clusters are highly polymorphic in structure, and subject to horizontal transfers, pseudogenization and gene losses. We identify recent horizontal transfers of complete GAL clusters from T. franciscae into one strain of T. delbrueckii, and from a relative of T. maleeae into one strain of T. globosa. The variability and dynamic evolution of GAL clusters in Torulaspora indicates that there is strong natural selection on the GAL pathway in this genus.
Collapse
Affiliation(s)
- Anjan Venkatesh
- UCD Conway Institute and School of MedicineUniversity College DublinDublinIreland
| | - Anthony L. Murray
- UCD Conway Institute and School of MedicineUniversity College DublinDublinIreland
| | - Aisling Y. Coughlan
- UCD Conway Institute and School of MedicineUniversity College DublinDublinIreland
| | - Kenneth H. Wolfe
- UCD Conway Institute and School of MedicineUniversity College DublinDublinIreland
| |
Collapse
|
6
|
Janíčková Z, Janeček Š. Fungal α-amylases from three GH13 subfamilies: their sequence-structural features and evolutionary relationships. Int J Biol Macromol 2020; 159:763-772. [DOI: 10.1016/j.ijbiomac.2020.05.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 01/12/2023]
|
7
|
Libkind D, Peris D, Cubillos FA, Steenwyk JL, Opulente DA, Langdon QK, Rokas A, Hittinger CT. Into the wild: new yeast genomes from natural environments and new tools for their analysis. FEMS Yeast Res 2020; 20:foaa008. [PMID: 32009143 PMCID: PMC7067299 DOI: 10.1093/femsyr/foaa008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Genomic studies of yeasts from the wild have increased considerably in the past few years. This revolution has been fueled by advances in high-throughput sequencing technologies and a better understanding of yeast ecology and phylogeography, especially for biotechnologically important species. The present review aims to first introduce new bioinformatic tools available for the generation and analysis of yeast genomes. We also assess the accumulated genomic data of wild isolates of industrially relevant species, such as Saccharomyces spp., which provide unique opportunities to further investigate the domestication processes associated with the fermentation industry and opportunistic pathogenesis. The availability of genome sequences of other less conventional yeasts obtained from the wild has also increased substantially, including representatives of the phyla Ascomycota (e.g. Hanseniaspora) and Basidiomycota (e.g. Phaffia). Here, we review salient examples of both fundamental and applied research that demonstrate the importance of continuing to sequence and analyze genomes of wild yeasts.
Collapse
Affiliation(s)
- D Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC) – CONICET/Universidad Nacional del Comahue, Quintral 1250 (8400), Bariloche., Argentina
| | - D Peris
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology-CSIC, Calle Catedrático Dr. D. Agustin Escardino Benlloch n°7, 46980 Paterna, Valencia, Spain
| | - F A Cubillos
- Millennium Institute for Integrative Biology (iBio). General del Canto 51 (7500574), Santiago
- Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Biología. Alameda 3363 (9170002). Estación Central. Santiago, Chile
| | - J L Steenwyk
- Department of Biological Sciences, VU Station B#35-1634, Vanderbilt University, Nashville, TN 37235, USA
| | - D A Opulente
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Avenue, Madison, I 53726-4084, Madison, WI, USA
| | - Q K Langdon
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
| | - A Rokas
- Department of Biological Sciences, VU Station B#35-1634, Vanderbilt University, Nashville, TN 37235, USA
| | - C T Hittinger
- Laboratory of Genetics, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, Center for Genomic Science Innovation, University of Wisconsin-Madison, 1552 University Avenue, Madison, WI 53726-4084, USA
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Avenue, Madison, I 53726-4084, Madison, WI, USA
| |
Collapse
|
8
|
Visnapuu T, Meldre A, Põšnograjeva K, Viigand K, Ernits K, Alamäe T. Characterization of a Maltase from an Early-Diverged Non-Conventional Yeast Blastobotrys adeninivorans. Int J Mol Sci 2019; 21:E297. [PMID: 31906253 PMCID: PMC6981392 DOI: 10.3390/ijms21010297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 11/17/2022] Open
Abstract
Genome of an early-diverged yeast Blastobotrys (Arxula) adeninivorans (Ba) encodes 88 glycoside hydrolases (GHs) including two α-glucosidases of GH13 family. One of those, the rna_ARAD1D20130g-encoded protein (BaAG2; 581 aa) was overexpressed in Escherichia coli, purified and characterized. We showed that maltose, other maltose-like substrates (maltulose, turanose, maltotriose, melezitose, malto-oligosaccharides of DP 4‒7) and sucrose were hydrolyzed by BaAG2, whereas isomaltose and isomaltose-like substrates (palatinose, α-methylglucoside) were not, confirming that BaAG2 is a maltase. BaAG2 was competitively inhibited by a diabetes drug acarbose (Ki = 0.8 µM) and Tris (Ki = 70.5 µM). BaAG2 was competitively inhibited also by isomaltose-like sugars and a hydrolysis product-glucose. At high maltose concentrations, BaAG2 exhibited transglycosylating ability producing potentially prebiotic di- and trisaccharides. Atypically for yeast maltases, a low but clearly recordable exo-hydrolytic activity on amylose, amylopectin and glycogen was detected. Saccharomyces cerevisiae maltase MAL62, studied for comparison, had only minimal ability to hydrolyze these polymers, and its transglycosylating activity was about three times lower compared to BaAG2. Sequence identity of BaAG2 with other maltases was only moderate being the highest (51%) with the maltase MalT of Aspergillus oryzae.
Collapse
Affiliation(s)
| | | | | | | | | | - Tiina Alamäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; (T.V.); (A.M.); (K.P.); (K.V.); (K.E.)
| |
Collapse
|
9
|
Exploring the sequence variability of polymerization-involved residues in the production of levan- and inulin-type fructooligosaccharides with a levansucrase. Sci Rep 2019; 9:7720. [PMID: 31118468 PMCID: PMC6531494 DOI: 10.1038/s41598-019-44211-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
The connection between the gut microbiome composition and human health has long been recognized, such that the host-microbiome interplay is at present the subject of the so-called “precision medicine”. Non-digestible fructooligosaccharides (FOS) can modulate the microbial composition and therefore their consumption occupies a central place in a strategy seeking to reverse microbiome-linked diseases. We created a small library of Bacillus megaterium levansucrase variants with focus on the synthesis of levan- and inulin-type FOS. Modifications were introduced at positions R370, K373 and F419, which are either part of the oligosaccharide elongation pathway or are located in the vicinity of residues that modulate polymerization. These amino acids were exchanged by residues of different characteristics, some of them being extremely low- or non-represented in enzymes of the levansucrase family (Glycoside Hydrolase 68, GH68). F419 seemed to play a minor role in FOS binding. However, changes at R370 abated the levansucrase capacity to synthesize levan-type oligosaccharides, with some mutations turning the product specificity towards neo-FOS and the inulin-like sugar 1-kestose. Although variants retaining the native R370 produced efficiently levan-type tri-, tetra- and pentasaccharides, their capacity to elongate these FOS was hampered by including the mutation K373H or K373L. Mutant K373H, for instance, generated 37- and 5.6-fold higher yields of 6-kestose and 6-nystose, respectively, than the wild-type enzyme, while maintaining a similar catalytic activity. The effect of mutations on the levansucrase product specificity is discussed.
Collapse
|
10
|
Cubillos FA, Gibson B, Grijalva-Vallejos N, Krogerus K, Nikulin J. Bioprospecting for brewers: Exploiting natural diversity for naturally diverse beers. Yeast 2019; 36:383-398. [PMID: 30698853 DOI: 10.1002/yea.3380] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/29/2022] Open
Abstract
The burgeoning interest in archaic, traditional, and novel beer styles has coincided with a growing appreciation of the role of yeasts in determining beer character as well as a better understanding of the ecology and biogeography of yeasts. Multiple studies in recent years have highlighted the potential of wild Saccharomyces and non-Saccharomyces yeasts for production of beers with novel flavour profiles and other desirable properties. Yeasts isolated from spontaneously fermented beers as well as from other food systems (wine, bread, and kombucha) have shown promise for brewing application, and there is evidence that such cross-system transfers have occurred naturally in the past. We review here the available literature pertaining to the use of nonconventional yeasts in brewing, with a focus on the origins of these yeasts, including methods of isolation. Practical aspects of utilizing nondomesticated yeasts are discussed, and modern methods to facilitate discovery of yeasts with brewing potential are highlighted.
Collapse
Affiliation(s)
- Francisco A Cubillos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Brian Gibson
- Industrial Biotechnology and Food Solutions, VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Nubia Grijalva-Vallejos
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Kristoffer Krogerus
- Industrial Biotechnology and Food Solutions, VTT Technical Research Centre of Finland Ltd, Espoo, Finland.,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Espoo, Finland
| | - Jarkko Nikulin
- Industrial Biotechnology and Food Solutions, VTT Technical Research Centre of Finland Ltd, Espoo, Finland.,Chemical Process Engineering, Faculty of Technology, University of Oulu, Oulu, Finland
| |
Collapse
|