1
|
Divín D, Goméz Samblas M, Kuttiyarthu Veetil N, Voukali E, Świderská Z, Krajzingrová T, Těšický M, Beneš V, Elleder D, Bartoš O, Vinkler M. Cannabinoid receptor 2 evolutionary gene loss makes parrots more susceptible to neuroinflammation. Proc Biol Sci 2022; 289:20221941. [PMID: 36475439 PMCID: PMC9727682 DOI: 10.1098/rspb.2022.1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In vertebrates, cannabinoids modulate neuroimmune interactions through two cannabinoid receptors (CNRs) conservatively expressed in the brain (CNR1, syn. CB1) and in the periphery (CNR2, syn. CB2). Our comparative genomic analysis indicates several evolutionary losses in the CNR2 gene that is involved in immune regulation. Notably, we show that the CNR2 gene pseudogenized in all parrots (Psittaciformes). This CNR2 gene loss occurred because of chromosomal rearrangements. Our positive selection analysis suggests the absence of any specific molecular adaptations in parrot CNR1 that would compensate for the CNR2 loss in the modulation of the neuroimmune interactions. Using transcriptomic data from the brains of birds with experimentally induced sterile inflammation we highlight possible functional effects of such a CNR2 gene loss. We compare the expression patterns of CNR and neuroinflammatory markers in CNR2-deficient parrots (represented by the budgerigar, Melopsittacus undulatus and five other parrot species) with CNR2-intact passerines (represented by the zebra finch, Taeniopygia guttata). Unlike in passerines, stimulation with lipopolysaccharide resulted in neuroinflammation in the parrots linked with a significant upregulation of expression in proinflammatory cytokines (including interleukin 1 beta (IL1B) and 6 (IL6)) in the brain. Our results indicate the functional importance of the CNR2 gene loss for increased sensitivity to brain inflammation.
Collapse
Affiliation(s)
- Daniel Divín
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Mercedes Goméz Samblas
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Nithya Kuttiyarthu Veetil
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Eleni Voukali
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Zuzana Świderská
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Tereza Krajzingrová
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Martin Těšický
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| | - Vladimír Beneš
- Genomics Core Facility, European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Daniel Elleder
- Institute of Molecular Genetics, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Oldřich Bartoš
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic
| | - Michal Vinkler
- Faculty of Science, Department of Zoology, Charles University, Viničná 7, Prague 128 44, Czech Republic
| |
Collapse
|
2
|
Sætre CLC, Eroukhmanoff F, Rönkä K, Kluen E, Thorogood R, Torrance J, Tracey A, Chow W, Pelan S, Howe K, Jakobsen KS, Tørresen OK. A Chromosome-Level Genome Assembly of the Reed Warbler (Acrocephalus scirpaceus). Genome Biol Evol 2021; 13:6367782. [PMID: 34499122 PMCID: PMC8459166 DOI: 10.1093/gbe/evab212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
The reed warbler (Acrocephalus scirpaceus) is a long-distance migrant passerine with a wide distribution across Eurasia. This species has fascinated researchers for decades, especially its role as host of a brood parasite, and its capacity for rapid phenotypic change in the face of climate change. Currently, it is expanding its range northwards in Europe, and is altering its migratory behavior in certain areas. Thus, there is great potential to discover signs of recent evolution and its impact on the genomic composition of the reed warbler. Here, we present a high-quality reference genome for the reed warbler, based on PacBio, 10×, and Hi-C sequencing. The genome has an assembly size of 1,075,083,815 bp with a scaffold N50 of 74,438,198 bp and a contig N50 of 12,742,779 bp. BUSCO analysis using aves_odb10 as a model showed that 95.7% of BUSCO genes were complete. We found unequivocal evidence of two separate macrochromosomal fusions in the reed warbler genome, in addition to the previously identified fusion between chromosome Z and a part of chromosome 4A in the Sylvioidea superfamily. We annotated 14,645 protein-coding genes, and a BUSCO analysis of the protein sequences indicated 97.5% completeness. This reference genome will serve as an important resource, and will provide new insights into the genomic effects of evolutionary drivers such as coevolution, range expansion, and adaptations to climate change, as well as chromosomal rearrangements in birds.
Collapse
Affiliation(s)
| | | | - Katja Rönkä
- HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Finland.,Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Edward Kluen
- HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Finland.,Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - Rose Thorogood
- HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Finland.,Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland
| | - James Torrance
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - William Chow
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Sarah Pelan
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway
| | - Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Norway
| |
Collapse
|
3
|
Kretschmer R, de Souza MS, Furo IDO, Romanov MN, Gunski RJ, Garnero ADV, de Freitas TRO, de Oliveira EHC, O’Connor RE, Griffin DK. Interspecies Chromosome Mapping in Caprimulgiformes, Piciformes, Suliformes, and Trogoniformes (Aves): Cytogenomic Insight into Microchromosome Organization and Karyotype Evolution in Birds. Cells 2021; 10:cells10040826. [PMID: 33916942 PMCID: PMC8067558 DOI: 10.3390/cells10040826] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 01/18/2023] Open
Abstract
Interchromosomal rearrangements involving microchromosomes are rare events in birds. To date, they have been found mostly in Psittaciformes, Falconiformes, and Cuculiformes, although only a few orders have been analyzed. Hence, cytogenomic studies focusing on microchromosomes in species belonging to different bird orders are essential to shed more light on the avian chromosome and karyotype evolution. Based on this, we performed a comparative chromosome mapping for chicken microchromosomes 10 to 28 using interspecies BAC-based FISH hybridization in five species, representing four Neoaves orders (Caprimulgiformes, Piciformes, Suliformes, and Trogoniformes). Our results suggest that the ancestral microchromosomal syntenies are conserved in Pteroglossus inscriptus (Piciformes), Ramphastos tucanus tucanus (Piciformes), and Trogon surrucura surrucura (Trogoniformes). On the other hand, chromosome reorganization in Phalacrocorax brasilianus (Suliformes) and Hydropsalis torquata (Caprimulgiformes) included fusions involving both macro- and microchromosomes. Fissions in macrochromosomes were observed in P. brasilianus and H. torquata. Relevant hypothetical Neognathae and Neoaves ancestral karyotypes were reconstructed to trace these rearrangements. We found no interchromosomal rearrangement involving microchromosomes to be shared between avian orders where rearrangements were detected. Our findings suggest that convergent evolution involving microchromosomal change is a rare event in birds and may be appropriate in cytotaxonomic inferences in orders where these rearrangements occurred.
Collapse
Affiliation(s)
- Rafael Kretschmer
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.K.); (M.N.R.); (R.E.O.)
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91509-900 Rio Grande do Sul, Brazil;
| | - Marcelo Santos de Souza
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, 97300-162 Rio Grande do Sul, Brazil; (M.S.d.S.); (R.J.G.); (A.d.V.G.)
| | - Ivanete de Oliveira Furo
- Laboratório de Reprodução Animal, LABRAC, Universidade Federal Rural da Amazônia, UFRA, Parauapebas, 68515-000 Pará, Brazil;
| | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.K.); (M.N.R.); (R.E.O.)
| | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, 97300-162 Rio Grande do Sul, Brazil; (M.S.d.S.); (R.J.G.); (A.d.V.G.)
| | - Analía del Valle Garnero
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, 97300-162 Rio Grande do Sul, Brazil; (M.S.d.S.); (R.J.G.); (A.d.V.G.)
| | | | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, 67030-000 Pará, Brazil;
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, 66075-110 Pará, Brazil
| | - Rebecca E. O’Connor
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.K.); (M.N.R.); (R.E.O.)
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.K.); (M.N.R.); (R.E.O.)
- Correspondence: ; Tel.: +44-1227-823022
| |
Collapse
|
4
|
Furo IDO, Kretschmer R, O'Brien PCM, Pereira JCDC, Gunski RJ, Garnero ADV, O'Connor RE, Griffin DK, Ferguson-Smith MA, Oliveira EHCD. Cytotaxonomy of Gallinula melanops (Gruiformes, Rallidae): Karyotype evolution and phylogenetic inference. Genet Mol Biol 2021; 44:e20200241. [PMID: 33821875 PMCID: PMC8022357 DOI: 10.1590/1678-4685-gmb-2020-0241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/29/2021] [Indexed: 11/22/2022] Open
Abstract
Although Rallidae is the most diverse family within Gruiformes, there is little information concerning the karyotype of the species in this group. In fact, Gallinula melanops, a species of Rallidae found in Brazil, is among the few species studied cytogenetically, but only with conventional staining and repetitive DNA mapping, showing 2n=80. Thus, in order to understand the karyotypic evolution and phylogeny of this group, the present study aimed to analyze the karyotype of G. melanops by classical and molecular cytogenetics, comparing the results with other species of Gruiformes. The results show that G. melanops has the same chromosome rearrangements as described in Gallinula chloropus (Clade Fulica), including fission of ancestral chromosomes 4 and 5 of Gallus gallus (GGA), beyond the fusion between two of segments resultants of the GGA4/GGA5, also fusions between the chromosomes GGA6/GGA7. Thus, despite the fact that some authors have suggested the inclusion of G. melanops in genus Porphyriops, our molecular cytogenetic results confirm its place in the Gallinula genus.
Collapse
Affiliation(s)
- Ivanete de Oliveira Furo
- Universidade Federal Rural da Amazônia (UFRA) Laboratório de Reprodução Animal (LABRAC), Parauapebas, PA, Brazil
- University of Cambridge Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom
| | - Rafael Kretschmer
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduação em Genética e Biologia Molecular (PPGBM), Porto Alegre, RS, Brazil
- University of Kent, School of Biosciences, Canterbury, United Kingdom
| | - Patricia C M O'Brien
- University of Cambridge Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom
| | - Jorge Claudio da Costa Pereira
- University of Cambridge Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom
- University of Trás-os-Montes and Alto Douro (UTAD), Animal and Veterinary Research Centre (CECAV), Vila Real, Portugal
| | - Ricardo José Gunski
- Universidade Federal do Pampa, Programa de Pós-graduação em Ciências Biológicas (PPGCB), São Gabriel, RS, Brazil
| | - Analía Del Valle Garnero
- Universidade Federal do Pampa, Programa de Pós-graduação em Ciências Biológicas (PPGCB), São Gabriel, RS, Brazil
| | | | | | - Malcolm A Ferguson-Smith
- University of Cambridge Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, Cambridge, United Kingdom
| | - Edivaldo Herculano Corrêa de Oliveira
- Instituto Evandro Chagas, Laboratório de Cultura de Tecidos e Citogenética (SAMAM), Ananindeua, PA, Brazil
- Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais, Belém, PA, Brazil
| |
Collapse
|
5
|
Furo IDO, Kretschmer R, O'Brien PC, Pereira JC, Garnero ADV, Gunski RJ, O'Connor RE, Griffin DK, Gomes AJB, Ferguson-Smith MA, de Oliveira EHC. Chromosomal Evolution in the Phylogenetic Context: A Remarkable Karyotype Reorganization in Neotropical Parrot Myiopsitta monachus (Psittacidae). Front Genet 2020; 11:721. [PMID: 32754200 PMCID: PMC7366516 DOI: 10.3389/fgene.2020.00721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022] Open
Abstract
Myiopsitta monachus is a small Neotropical parrot (Psittaciformes: Arini Tribe) from subtropical and temperate regions of South America. It has a diploid chromosome number 2n = 48, different from other members of the Arini Tribe that have usually 70 chromosomes. The species has the lowest 2n within the Arini Tribe. In this study, we combined comparative chromosome painting with probes generated from chromosomes of Gallus gallus and Leucopternis albicollis, and FISH with bacterial artificial chromosomes (BACs) selected from the genome library of G. gallus with the aim to shed light on the dynamics of genome reorganization in M. monachus in the phylogenetic context. The homology maps showed a great number of fissions in macrochromosomes, and many fusions between microchromosomes and fragments of macrochromosomes. Our phylogenetic analysis by Maximum Parsimony agree with molecular data, placing M. monachus in a basal position within the Arini Tribe, together with Amazona aestiva (short tailed species). In M. monachus many chromosome rearrangements were found to represent autopomorphic characters, indicating that after this species split as an independent branch, an intensive karyotype reorganization took place. In addition, our results show that M. monachus probes generated by flow cytometry provide novel cytogenetic tools for the detection of avian chromosome rearrangements, since this species presents breakpoints that have not been described in other species.
Collapse
Affiliation(s)
- Ivanete de Oliveira Furo
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Cultura de Tecidos e Citogenética, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Brazil.,Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Rafael Kretschmer
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Patricia Caroline O'Brien
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Jorge C Pereira
- Animal and Veterinary Research Centre (CEVAV), University of Tràs-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | | | - Ricardo José Gunski
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa, São Gabriel, Brazil
| | | | | | | | - Malcolm Andrew Ferguson-Smith
- Department of Veterinary Medicine, Cambridge Resource Centre for Comparative Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Edivaldo Herculano Correa de Oliveira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Cultura de Tecidos e Citogenética, Seção de Meio Ambiente, Instituto Evandro Chagas, Ananindeua, Brazil.,Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
6
|
Furo IDO, Kretschmer R, O’Brien PCM, Pereira JC, Ferguson-Smith MA, de Oliveira EHC. Phylogenetic Analysis and Karyotype Evolution in Two Species of Core Gruiformes: Aramides cajaneus and Psophia viridis. Genes (Basel) 2020; 11:E307. [PMID: 32183220 PMCID: PMC7140812 DOI: 10.3390/genes11030307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 11/17/2022] Open
Abstract
Gruiformes is a group with phylogenetic issues. Recent studies based on mitochondrial and genomic DNA have proposed the existence of a core Gruiformes, consisting of five families: Heliornithidae, Aramidae, Gruidae, Psophiidae and Rallidae. Karyotype studies on these species are still scarce, either by conventional staining or molecular cytogenetics. Due to this, this study aimed to analyze the karyotype of two species (Aramides cajaneus and Psophia viridis) belonging to families Rallidae and Psopiidae, respectively, by comparative chromosome painting. The results show that some chromosome rearrangements in this group have different origins, such as the association of GGA5/GGA7 in A. cajaneus, as well as the fission of GGA4p and association GGA6/GGA7, which place P. viridis close to Fulica atra and Gallinula chloropus. In addition, we conclude that the common ancestor of the core Gruiformes maintained the original syntenic groups found in the putative avian ancestral karyotype.
Collapse
Affiliation(s)
- Ivanete de Oliveira Furo
- Post-Graduation Program in Genetics and Molecular Biology, Federal University of Pará, Belém, Pará 66075-110, Brazil;
- Laboratory of Tissue Culture and Cytogenetics, SAMAM, Evandro Chagas Institute, Ananindeua, Pará 67030-000, Brazil
- Cambridge Resource Centre for Comparative Genomics, Cambridge CB3 0ES, UK; (R.K.); (P.C.M.O.); (J.C.P.); (M.A.F.-S.)
| | - Rafael Kretschmer
- Cambridge Resource Centre for Comparative Genomics, Cambridge CB3 0ES, UK; (R.K.); (P.C.M.O.); (J.C.P.); (M.A.F.-S.)
- Pos-Graduation Program in Genetics and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 91509-900, Brazil
| | - Patrícia C. M. O’Brien
- Cambridge Resource Centre for Comparative Genomics, Cambridge CB3 0ES, UK; (R.K.); (P.C.M.O.); (J.C.P.); (M.A.F.-S.)
| | - Jorge C. Pereira
- Cambridge Resource Centre for Comparative Genomics, Cambridge CB3 0ES, UK; (R.K.); (P.C.M.O.); (J.C.P.); (M.A.F.-S.)
| | - Malcolm A. Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Cambridge CB3 0ES, UK; (R.K.); (P.C.M.O.); (J.C.P.); (M.A.F.-S.)
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratory of Tissue Culture and Cytogenetics, SAMAM, Evandro Chagas Institute, Ananindeua, Pará 67030-000, Brazil
- Faculty of Natural Sciences, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Pará 66075-110, Brazil
| |
Collapse
|
7
|
Seligmann ICA, Furo IO, Dos Santos MS, Tagliarini MM, Araujo CCD, O''Brien PCM, Ferguson-Smith MA, de Oliveira EHC. Comparative Chromosome Painting in Two Brazilian Stork Species with Different Diploid Numbers. Cytogenet Genome Res 2019; 159:32-38. [PMID: 31542782 DOI: 10.1159/000503019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2019] [Indexed: 11/19/2022] Open
Abstract
Despite the variation observed in the diploid chromosome number of storks (Ciconiiformes, Ciconiidae), from 2n = 52 to 2n = 78, most reports have relied solely on analyses by conventional staining. As most species have similar macrochromosomes, some authors propose that karyotype evolution involves mainly fusions between microchromosomes, which are highly variable in species with different diploid numbers. In order to verify this hypothesis, in this study, the karyotypes of 2 species of storks from South America with different diploid numbers, the jabiru (Jabiru mycteria, 2n = 56) and the maguary stork (Ciconia maguary, 2n = 72), were analyzed by chromosome painting using whole chromosome probes from the macrochromosomes of Gallus gallus (GGA) and Leucopternis albicollis (LAL). The results revealed that J. mycteria and C. maguary share synteny within chromosome pairs 1-9 and Z. The syntenies to the macrochromosomes of G. gallus are conserved, except for GGA4, which is homologous to 2 different pairs, as in most species of birds. A fusion of GGA8 and GGA9 was observed in both species. Additionally, chromosomes corresponding to GGA4p and GGA6 are fused to other segments that did not hybridize to any of the macrochromosome probes used, suggesting that these segments correspond to microchromosomes. Hence, our data corroborate the proposed hypothesis that karyotype evolution is based on fusions involving microchromosomes. In view of the morphological constancy of the macrochromosome pairs in most Ciconiidae, we propose a putative ancestral karyotype for the family, including the GGA8/GGA9 fusion, and a diploid number of 2n = 78. The use of probes for microchromosome pairs should be the next step in identifying other synapomorphies that may help to clarify the phylogeny of this family.
Collapse
|