1
|
Kovacs KD, Ciulla TA, Kiss S. Advancements in ocular gene therapy delivery: vectors and subretinal, intravitreal, and suprachoroidal techniques. Expert Opin Biol Ther 2022; 22:1193-1208. [PMID: 36062410 DOI: 10.1080/14712598.2022.2121646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Ocular gene therapy represents fertile ground for rapid innovation, with ever-expanding therapeutic strategies, molecular targets, and indications. AREAS COVERED : Potential indications for ocular gene therapy have classically focused on inherited retinal disease (IRD), but more recently include acquired retinal diseases, such as neovascular age-related macular degeneration, geographic atrophy and diabetic retinopathy. Ocular gene therapy strategies have proliferated recently, and include gene augmentation, gene inactivation, gene editing, RNA modulation, and gene-independent gene augmentation. Viral vector therapeutic constructs include adeno-associated virus and lentivirus and continue to evolve through directed evolution and rationale design. Ocular gene therapy administration techniques have expanded beyond pars plana vitrectomy with subretinal injection to intravitreal injection and suprachoroidal injection. EXPERT OPINION : The success of treatment for IRD, paired with the promise of clinical research in acquired retinal diseases and in administration techniques, has raised the possibility of in-office gene therapy for common retinal disorders within the next five to ten years.
Collapse
Affiliation(s)
- Kyle D Kovacs
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| | | | - Szilárd Kiss
- Department of Ophthalmology, Retina Service, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
2
|
Peña JS, Vazquez M. Harnessing the Neuroprotective Behaviors of Müller Glia for Retinal Repair. FRONT BIOSCI-LANDMRK 2022; 27:169. [PMID: 35748245 PMCID: PMC9639582 DOI: 10.31083/j.fbl2706169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Progressive and irreversible vision loss in mature and aging adults creates a health and economic burden, worldwide. Despite the advancements of many contemporary therapies to restore vision, few approaches have considered the innate benefits of gliosis, the endogenous processes of retinal repair that precede vision loss. Retinal gliosis is fundamentally driven by Müller glia (MG) and is characterized by three primary cellular mechanisms: hypertrophy, proliferation, and migration. In early stages of gliosis, these processes have neuroprotective potential to halt the progression of disease and encourage synaptic activity among neurons. Later stages, however, can lead to glial scarring, which is a hallmark of disease progression and blindness. As a result, the neuroprotective abilities of MG have remained incompletely explored and poorly integrated into current treatment regimens. Bioengineering studies of the intrinsic behaviors of MG hold promise to exploit glial reparative ability, while repressing neuro-disruptive MG responses. In particular, recent in vitro systems have become primary models to analyze individual gliotic processes and provide a stepping stone for in vivo strategies. This review highlights recent studies of MG gliosis seeking to harness MG neuroprotective ability for regeneration using contemporary biotechnologies. We emphasize the importance of studying gliosis as a reparative mechanism, rather than disregarding it as an unfortunate clinical prognosis in diseased retina.
Collapse
Affiliation(s)
- Juan S. Peña
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| |
Collapse
|
3
|
Caruso SM, Quinn PM, da Costa BL, Tsang SH. CRISPR/Cas therapeutic strategies for autosomal dominant disorders. J Clin Invest 2022; 132:158287. [PMID: 35499084 PMCID: PMC9057583 DOI: 10.1172/jci158287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Salvatore Marco Caruso
- Department of Biomedical Engineering and
- Jonas Children’s Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
- Edward S. Harkness Eye Institute, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Peter M.J. Quinn
- Jonas Children’s Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
- Edward S. Harkness Eye Institute, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Bruna Lopes da Costa
- Department of Biomedical Engineering and
- Jonas Children’s Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
- Edward S. Harkness Eye Institute, NewYork-Presbyterian Hospital, New York, New York, USA
| | - Stephen H. Tsang
- Department of Biomedical Engineering and
- Jonas Children’s Vision Care and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia University, New York, New York, USA
- Edward S. Harkness Eye Institute, NewYork-Presbyterian Hospital, New York, New York, USA
- Institute of Human Nutrition, Department of Ophthalmology and Department of Pathology and Cell Biology
- Columbia Stem Cell Initiative, and
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Rudnick ND, Kim LA, Comander J. Adeno-associated Viral Vectors in the Retina: Delivering Gene Therapy to the Right Destination. Int Ophthalmol Clin 2022; 62:215-229. [PMID: 35325920 DOI: 10.1097/iio.0000000000000416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
5
|
Delivery of siRNA to the Eye: Protocol for a Feasibility Study to Assess Novel Delivery System for Topical Delivery of siRNA Therapeutics to the Ocular Surface. Methods Mol Biol 2021. [PMID: 33928589 DOI: 10.1007/978-1-0716-1298-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Drug delivery to the eye remains a real challenge due to the presence of ocular anatomical barriers and physiological protective mechanisms. The lack of effective siRNA delivery mechanism has hampered the real potential of RNAi therapy, but recent literature suggests that nanocarrier systems show great promise in enhancing siRNA bioavailability and reducing the need for repeated intraocular injections. A diverse range of materials are under exploration worldwide, including natural and synthetic polymers, liposomes, peptides, and dendrimeric nanomaterials. This chapter describes a simple workflow for feasibility assessment of a proposed ocular surface siRNA delivery system. Gel retardation assay is used for investigation of optimal siRNA to carrier loading ratio. Fluorescent siRNA allows for initial in vitro testing of cellular uptake to corneal epithelial cells and investigation of in vivo siRNA delivery into mouse cornea by live animal imaging and fluorescence microscopy.
Collapse
|
6
|
Zhang Y, Al Mamun A, Yuan Y, Lu Q, Xiong J, Yang S, Wu C, Wu Y, Wang J. Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Mol Med Rep 2021; 23:417. [PMID: 33846780 PMCID: PMC8025476 DOI: 10.3892/mmr.2021.12056] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most debilitating of all the traumatic conditions that afflict individuals. For a number of years, extensive studies have been conducted to clarify the molecular mechanisms of SCI. Experimental and clinical studies have indicated that two phases, primary damage and secondary damage, are involved in SCI. The initial mechanical damage is caused by local impairment of the spinal cord. In addition, the fundamental mechanisms are associated with hyperflexion, hyperextension, axial loading and rotation. By contrast, secondary injury mechanisms are led by systemic and cellular factors, which may also be initiated by the primary injury. Although significant advances in supportive care have improved clinical outcomes in recent years, a number of studies continue to explore specific pharmacological therapies to minimize SCI. The present review summarized some important pathophysiologic mechanisms that are involved in SCI and focused on several pharmacological and non‑pharmacological therapies, which have either been previously investigated or have a potential in the management of this debilitating injury in the near future.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Abdullah Al Mamun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yuan Yuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Qi Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jun Xiong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Shulin Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
| | - Chengbiao Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jian Wang
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
7
|
高 孟, 朱 星, 王 诗, 张 炳, 张 芸, 何 宇, 周 燕, 李 顺, 杨 光, 廖 光, 包 骥, 步 宏. [Rapid screening of single guide RNA targeting pig genome and the harvesting of monoclonal cells by microarray seal]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2021; 38:111-121. [PMID: 33899435 PMCID: PMC10307559 DOI: 10.7507/1001-5515.202006032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/20/2020] [Indexed: 02/05/2023]
Abstract
The emergence of regular short repetitive palindromic sequence clusters (CRISPR) and CRISPR- associated proteins 9 (Cas9) gene editing technology has greatly promoted the wide application of genetically modified pigs. Efficient single guide RNA (sgRNA) is the key to the success of gene editing using CRISPR/Cas9 technology. For large animals with a long reproductive cycle, such as pigs, it is necessary to screen out efficient sgRNA in vitro to avoid wasting time and resource costs before animal experiments. In addition, how to efficiently obtain positive gene editing monoclonal cells is a difficult problem to be solved. In this study, a rapid sgRNA screening method targeting the pig genome was established and we rapidly obtained Fah gene edited cells, laying a foundation for the subsequent production of Fah knockout pigs as human hepatocyte bioreactor. At the same time, the method of obtaining monoclonal cells using pattern microarray culture technology was explored.
Collapse
Affiliation(s)
- 孟雨 高
- 四川大学华西医院 病理科(成都 610041)Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 星龙 朱
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 卫生部移植工程与移植免疫重点实验室(成都 610041)Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 诗盛 王
- 四川大学华西医院 华西华盛顿线粒体与代谢研究中心(成都 610041)West China - Washington Mitochondria and Metabolism Research Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 炳琪 张
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 卫生部移植工程与移植免疫重点实验室(成都 610041)Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 芸琳 张
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 卫生部移植工程与移植免疫重点实验室(成都 610041)Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 宇婷 何
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 卫生部移植工程与移植免疫重点实验室(成都 610041)Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 燕燕 周
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 顺 李
- 电子科技大学 生命科学技术学院 生物物理研究室(成都 611731)Department of Biophysics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R.China
| | - 光 杨
- 四川大学华西医院 实验动物中心(成都 611731)Experimental Animal Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 光能 廖
- 四川大学华西医院 实验动物中心(成都 611731)Experimental Animal Center, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 骥 包
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 卫生部移植工程与移植免疫重点实验室(成都 610041)Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHFPC; West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| | - 宏 步
- 四川大学华西医院 病理科(成都 610041)Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
- 四川大学华西医院 临床病理研究所(成都 610041)Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu 610041, P.R.China
| |
Collapse
|
8
|
Manafi N, Shokri F, Achberger K, Hirayama M, Mohammadi MH, Noorizadeh F, Hong J, Liebau S, Tsuji T, Quinn PMJ, Mashaghi A. Organoids and organ chips in ophthalmology. Ocul Surf 2020; 19:1-15. [PMID: 33220469 DOI: 10.1016/j.jtos.2020.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Recent advances have driven the development of stem cell-derived, self-organizing, three-dimensional miniature organs, termed organoids, which mimic different eye tissues including the retina, cornea, and lens. Organoids and engineered microfluidic organ-on-chips (organ chips) are transformative technologies that show promise in simulating the architectural and functional complexity of native organs. Accordingly, they enable exploration of facets of human disease and development not accurately recapitulated by animal models. Together, these technologies will increase our understanding of the basic physiology of different eye structures, enable us to interrogate unknown aspects of ophthalmic disease pathogenesis, and serve as clinically-relevant surrogates for the evaluation of ocular therapeutics. Both the burden and prevalence of monogenic and multifactorial ophthalmic diseases, which can cause visual impairment or blindness, in the human population warrants a paradigm shift towards organoids and organ chips that can provide sensitive, quantitative, and scalable phenotypic assays. In this article, we review the current situation of organoids and organ chips in ophthalmology and discuss how they can be leveraged for translational applications.
Collapse
Affiliation(s)
- Navid Manafi
- Medical Systems Biophysics and Bioengineering, The Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC, Leiden, the Netherlands; Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Fereshteh Shokri
- Department of Epidemiology, Erasmus Medical Center, 3000 CA, Rotterdam, the Netherlands
| | - Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Österbergstrasse 3, 72074, Tübingen, Germany
| | - Masatoshi Hirayama
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Chiba, 272-8513, Japan; Department of Ophthalmology, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - Melika Haji Mohammadi
- Medical Systems Biophysics and Bioengineering, The Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC, Leiden, the Netherlands
| | | | - Jiaxu Hong
- Medical Systems Biophysics and Bioengineering, The Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC, Leiden, the Netherlands; Department of Ophthalmology and Visual Science, Eye, and ENT Hospital, Shanghai Medical College, Fudan University, 83 Fenyang Road, Shanghai, China; Key NHC Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China; Key Laboratory of Myopia, National Health and Family Planning Commission, Shanghai, China
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, Österbergstrasse 3, 72074, Tübingen, Germany
| | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Biosystems Dynamics Research, Hyogo, 650-0047, Japan; Organ Technologies Inc., Minato, Tokyo, 105-0001, Japan
| | - Peter M J Quinn
- Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University. New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center - New York-Presbyterian Hospital, New York, NY, USA.
| | - Alireza Mashaghi
- Medical Systems Biophysics and Bioengineering, The Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333CC, Leiden, the Netherlands.
| |
Collapse
|
9
|
Bondarenko G, Sorden SD, Christian BJ, Webster S, Sharma AK. Semiquantitative Methods for GFP Immunohistochemistry and In Situ Hybridization to Evaluate AAV Transduction of Mouse Retinal Cells Following Subretinal Injection. Toxicol Pathol 2020; 49:537-543. [PMID: 33167778 DOI: 10.1177/0192623320964804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The goal of this study was to develop methods for the evaluation of green fluorescent protein (GFP) and GFP transcript biodistribution in paraformaldehyde-fixed paraffin-embedded (PFPE) eye sections to assess the effectiveness of Adeno-associated virus (AAV) gene delivery in an experimental ocular toxicity study. Female C57BL/6NTac mice were administered AAV2-enhancedGFP vector once via subretinal injection. One group also received anti-inflammatory therapy (meloxicam). Immunohistochemistry (IHC) and RNA in situ hybridization (ISH) for GFP were performed on PFPE serial eye sections and evaluated using semiquantitative methods. On day 43, GFP labeling in both IHC and ISH sections was greatest in the retinal pigment epithelium, compared with other retinal layers in which expression was negative to moderate. Despite the presence of IHC GFP labeling in the photoreceptor layer (PRL) in some animals, only low numbers of transduced cells were detected by ISH in the PRL. Simultaneous analysis of IHC and ISH may be needed for comprehensive assessment of gene transduction and protein biodistribution. This study demonstrates approaches for semiquantitative evaluation of IHC and ISH that allow interpretation and reporting of GFP expression in toxicity studies.
Collapse
|
10
|
Karlen SJ, Miller EB, Burns ME. Microglia Activation and Inflammation During the Death of Mammalian Photoreceptors. Annu Rev Vis Sci 2020; 6:149-169. [PMID: 32936734 PMCID: PMC10135402 DOI: 10.1146/annurev-vision-121219-081730] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Photoreceptors are highly specialized sensory neurons with unique metabolic and physiological requirements. These requirements are partially met by Müller glia and cells of the retinal pigment epithelium (RPE), which provide essential metabolites, phagocytose waste, and control the composition of the surrounding microenvironment. A third vital supporting cell type, the retinal microglia, can provide photoreceptors with neurotrophic support or exacerbate neuroinflammation and hasten neuronal cell death. Understanding the physiological requirements for photoreceptor homeostasis and the factors that drive microglia to best promote photoreceptor survival has important implications for the treatment and prevention of blinding degenerative diseases like retinitis pigmentosa and age-related macular degeneration.
Collapse
Affiliation(s)
- Sarah J. Karlen
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616, USA
| | - Eric B. Miller
- Center for Neuroscience, University of California, Davis, Davis, California 95616, USA
| | - Marie E. Burns
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616, USA
- Center for Neuroscience, University of California, Davis, Davis, California 95616, USA
- Department of Ophthalmology & Vision Science, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
11
|
Attwood MM, Jonsson J, Rask-Andersen M, Schiöth HB. Soluble ligands as drug targets. Nat Rev Drug Discov 2020; 19:695-710. [PMID: 32873970 DOI: 10.1038/s41573-020-0078-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
Historically, the main classes of drug targets have been receptors, enzymes, ion channels and transporters. However, owing largely to the rise of antibody-based therapies in the past two decades, soluble protein ligands such as inflammatory cytokines have become an increasingly important class of drug targets. In this Review, we analyse drugs targeting ligands that have reached clinical development at some point since 1992. We identify 291 drugs that target 99 unique ligands, and we discuss trends in the characteristics of the ligands, drugs and indications for which they have been tested. In the last 5 years, the number of ligand-targeting drugs approved by the FDA has doubled to 34, while the number of clinically validated ligand targets has doubled to 22. Cytokines and growth factors are the predominant types of targeted ligands (70%), and inflammation and autoimmune disorders, cancer and ophthalmological diseases are the top therapeutic areas for both approved agents and agents in clinical studies, reflecting the central role of cytokine and/or growth factor pathways in such diseases.
Collapse
Affiliation(s)
- Misty M Attwood
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Mathias Rask-Andersen
- Medical Genetics and Genomics, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden. .,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
12
|
Oh JK, Levi SR, Kim J, Lima de Carvalho JR, Ryu J, Sparrow JR, Tsang SH. Differences in Intraretinal Pigment Migration Across Inherited Retinal Dystrophies. Am J Ophthalmol 2020; 217:252-260. [PMID: 32442431 DOI: 10.1016/j.ajo.2020.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/15/2020] [Accepted: 05/08/2020] [Indexed: 01/12/2023]
Abstract
PURPOSE To determine whether there are differences in the prevalence of intraretinal pigment migration (IPM) across ages and genetic causes of inherited retinal dystrophies (IRDs). DESIGN Retrospective cohort study. METHODS Patients were evaluated at a single tertiary referral center. All patients with a clinical diagnosis of IRD and confirmatory genetic testing were included in these analyses. A total of 392 patients fit inclusion criteria, and 151 patients were excluded based on inconclusive genetic testing. Patients were placed into 3 groups, ciliary and ciliary-related photoreceptor, nonciliary photoreceptor, and retinal pigment epithelium (RPE), based on the cellular expression of the gene and the primary affected cell type. The presence of IPM was evaluated by using slit lamp biomicroscopy, indirect ophthalmoscopy, and wide-field color fundus photography. RESULTS IPM was seen in 257 of 339 patients (75.8%) with mutations in photoreceptor-specific genes and in 18 of 53 patients (34.0%) with mutations in RPE-specific genes (P < .0001). Pairwise analysis following stratification by age and gene category suggested significant differences at all age groups between patients with mutations in photoreceptor-specific genes and patients with mutations in RPE-specific genes (P < .05). A fitted multivariate logistic regression model was produced and demonstrated that the incidence of IPM increases as a function of both age and gene category. CONCLUSIONS IPM is a finding more commonly observed in IRDs caused by mutations in photoreceptor-specific genes than RPE-specific genes. The absence of IPM does not always rule out IRD and should raise suspicion for disease mutations in RPE-specific genes.
Collapse
Affiliation(s)
- Jin Kyun Oh
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA; College of Medicine, State University of New York at Downstate Medical Center, Brooklyn, New York, USA
| | - Sarah R Levi
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Joonpyo Kim
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Jose Ronaldo Lima de Carvalho
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA; Department of Ophthalmology, Empresa Brasileira de Servicos Hospitalares, Hospital das Clinicas de Pernambuco, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Department of Ophthalmology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Joseph Ryu
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA; Department of Pathology and Cell Biology, and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York, USA; Department of Pathology & Cell Biology, and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York, USA; Department of Pathology and Cell Biology, and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York, USA; Department of Pathology & Cell Biology, and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Rzhanova LA, Kuznetsova AV, Aleksandrova MA. Reprogramming of Differentiated Mammalian and Human Retinal Pigment Epithelium: Current Achievements and Prospects. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420040062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Impairment of the homeostatic and functional integrity of the retina and retinal pigment epithelium (RPE) is the main cause of some degenerative diseases of the human eye, which are accompanied by loss of eyesight. Despite the significant progress made over the past decades in the development of new methods for treatment for this pathology, there are still several complications when using surgical methods for correction of eyesight and so far insurmountable limitations in the applications of modern approaches, such as gene therapy and genetic engineering. One of the promising approaches to the treatment of degenerative diseases of the retina may be an approach based on the application of regenerative capacities of its endogenous cells with high plasticity, in particular, of RPE cells and Müller glia. Currently, vertebrate RPE cells are of great interest as a source of new photoreceptors and other neurons in the degrading retina in vivo. In this regard, the possibilities of their direct reprogramming by genetic, epigenetic, and chemical methods and their combination are being investigated. This review focuses on research in gene-directed reprogramming of vertebrate RPE cells into retinal neurons, with detailed analysis of the genes used as the main reprogramming factors, comparative analysis, and extrapolation of experimental data from animals to humans. Also, this review covers studies on the application of alternative approaches to gene-directed reprogramming, such as chemical-mediated reprogramming with the use of cocktails of therapeutic low-molecular-weight compounds and microRNAs. In general, the research results indicate the complexity of the process for direct reprogramming of human RPE cells into retinal neurons. However, taking into account the results of direct reprogramming of vertebrate cells and the accessibility of human RPE cells for various vectors that deliver a variety of molecules to cells, such as transcription factors, chimeric endonucleases, recombinant proteins, and low-weight molecular compounds, the most optimal combination of factors for the successful conversion of human RPE cells to retinal neurons can be suggested.
Collapse
|
14
|
Strobel B, Düchs MJ, Blazevic D, Rechtsteiner P, Braun C, Baum-Kroker KS, Schmid B, Ciossek T, Gottschling D, Hartig JS, Kreuz S. A Small-Molecule-Responsive Riboswitch Enables Conditional Induction of Viral Vector-Mediated Gene Expression in Mice. ACS Synth Biol 2020; 9:1292-1305. [PMID: 32427483 DOI: 10.1021/acssynbio.9b00410] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adeno-associated viral (AAV) vector-mediated gene therapy holds great potential for future medical applications. However, to facilitate safer and broader applicability and to enable patient-centric care, therapeutic protein expression should be controllable, ideally by an orally administered drug. The use of protein-based systems is considered rather undesirable, due to potential immunogenicity and the limited coding space of AAV. Ligand-dependent riboswitches, in contrast, are small and characterized by an attractive mode-of-action based on mRNA-self-cleavage, independent of coexpressed foreign protein. While a promising approach, switches available to date have only shown moderate potency in animals. In particular, ON-switches that induce transgene expression upon ligand administration so far have achieved rather disappointing results. Here we present the utilization of the previously described tetracycline-dependent ribozyme K19 for controlling AAV-mediated transgene expression in mice. Using this tool switch, we provide first proof for the feasibility of clinically desired key features, including multiorgan functionality, potent regulation (up to 15-fold induction), reversibility, and the possibility to fine-tune and repeatedly induce expression. The systematic assessment of ligand and reporter protein plasma levels further enabled the characterization of pharmacokinetic-pharmacodynamic relationships. Thus, our results strongly support future efforts to develop engineered riboswitches for applications in clinical gene therapy.
Collapse
Affiliation(s)
- Benjamin Strobel
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Matthias J. Düchs
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Dragica Blazevic
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Philipp Rechtsteiner
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Clemens Braun
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Katja S. Baum-Kroker
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Bernhard Schmid
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Thomas Ciossek
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Dirk Gottschling
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| | - Jörg S. Hartig
- Department of Chemistry, University of Konstanz, Konstanz, 78464, Germany
| | - Sebastian Kreuz
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, 88397, Germany
| |
Collapse
|
15
|
Prendergast ME, Burdick JA. Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902516. [PMID: 31512289 DOI: 10.1002/adma.201902516] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/28/2019] [Indexed: 06/10/2023]
Abstract
Advances in areas such as data analytics, genomics, and imaging have revealed individual patient complexities and exposed the inherent limitations of generic therapies for patient treatment. These observations have also fueled the development of precision medicine approaches, where therapies are tailored for the individual rather than the broad patient population. 3D printing is a field that intersects with precision medicine through the design of precision implants with patient-directed shapes, structures, and materials or for the development of patient-specific in vitro models that can be used for screening precision therapeutics. Toward their success, advances in 3D printing and biofabrication technologies are needed with enhanced resolution, complexity, reproducibility, and speed and that encompass a broad range of cells and materials. The overall goal of this progress report is to highlight recent advances in 3D printing technologies that are helping to enable advances important in precision medicine.
Collapse
Affiliation(s)
- Margaret E Prendergast
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, 19104, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, 19104, PA, USA
| |
Collapse
|
16
|
Jiang C, Lin X, Zhao Z. Applications of CRISPR/Cas9 Technology in the Treatment of Lung Cancer. Trends Mol Med 2019; 25:1039-1049. [DOI: 10.1016/j.molmed.2019.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/12/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022]
|
17
|
Shahsavari S, Eriyagama DNAM, Chen J, Halami B, Yin Y, Chillar K, Fang S. Sensitive Oligodeoxynucleotide Synthesis Using Dim and Dmoc as Protecting Groups. J Org Chem 2019; 84:13374-13383. [PMID: 31536351 PMCID: PMC6825528 DOI: 10.1021/acs.joc.9b01527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In traditional oligodeoxynucleotide (ODN) synthesis, phosphate groups are protected with the 2-cyanoethyl group, and amino groups are protected with acyl groups. At the end of ODN synthesis, deprotection is achieved with strong bases and nucleophiles. Therefore, traditional technologies are not suitable for the synthesis of ODNs containing sensitive functionalities. To address the problem, we report the use of Dim and Dmoc groups, which are based on the 1,3-dithian-2-yl-methyl function, for phosphate and amine protection for the solid phase ODN synthesis. Using the new Dim-Dmoc protection, deprotection was achieved under mild oxidative conditions without using any strong bases and nucleophiles. As a result, the new technology is suitable for the synthesis of ODNs containing sensitive functions. To demonstrate feasibility, seven 20-mer ODNs including four that contain sensitive ester and alkyl chloride groups were synthesized, purified with RP HPLC, and characterized with MALDI-TOF MS and enzyme digestion essays. High purity ODNs were obtained.
Collapse
Affiliation(s)
- Shahien Shahsavari
- Department of Chemistry , Michigan Technological University , 1400 Townsend Drive , Houghton , Michigan 49931 , United States
| | - Dhananjani N A M Eriyagama
- Department of Chemistry , Michigan Technological University , 1400 Townsend Drive , Houghton , Michigan 49931 , United States
| | - Jinsen Chen
- Department of Chemistry , Michigan Technological University , 1400 Townsend Drive , Houghton , Michigan 49931 , United States
| | - Bhaskar Halami
- Department of Chemistry , Michigan Technological University , 1400 Townsend Drive , Houghton , Michigan 49931 , United States
| | - Yipeng Yin
- Department of Chemistry , Michigan Technological University , 1400 Townsend Drive , Houghton , Michigan 49931 , United States
| | - Komal Chillar
- Department of Chemistry , Michigan Technological University , 1400 Townsend Drive , Houghton , Michigan 49931 , United States
| | - Shiyue Fang
- Department of Chemistry , Michigan Technological University , 1400 Townsend Drive , Houghton , Michigan 49931 , United States
| |
Collapse
|
18
|
Chen X, Zhao C, Guo B, Zhao Z, Wang H, Fang Z. Systematic Profiling of Alternative mRNA Splicing Signature for Predicting Glioblastoma Prognosis. Front Oncol 2019; 9:928. [PMID: 31608231 PMCID: PMC6769083 DOI: 10.3389/fonc.2019.00928] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence suggests that alternative splicing (AS) is modified in cancer and is associated with cancer progression. Systematic analysis of AS signature in glioblastoma (GBM) is lacking and is greatly needed. We profiled genome-wide AS events in 498 GBM patients in TCGA using RNA-seq data, and splicing network and prognostic predictor were built by integrated bioinformatics analysis. Among 45,610 AS events in 10,434 genes, we detected 1,829 AS events in 1,311 genes, and 1,667 AS events in 1,146 genes that were significantly associated with overall survival and disease-free survival of GBM patients, respectively. Five potential feature genes, S100A4, ECE2, CAST, ASPH, and LY6K, were discovered after network mining as well as correlation analysis between AS and gene expression, most of which were related to carcinogenesis and development. Multivariate survival model analysis indicated that these five feature genes could classify the prognosis at AS event and gene expression level. This report opens up a new avenue for exploration of the pathogenesis of GBM through AS, thus more precisely guiding clinical treatment and prognosis judgment.
Collapse
Affiliation(s)
- Xueran Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Chenggang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Bing Guo
- Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Zhiyang Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Zhiyou Fang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Department of Molecular Pathology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
19
|
|
20
|
Fischer N, Johnson Chacko L, Glueckert R, Schrott-Fischer A. Age-Dependent Changes in the Cochlea. Gerontology 2019; 66:33-39. [DOI: 10.1159/000499582] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/13/2019] [Indexed: 11/19/2022] Open
|
21
|
Kuo PC. Invited Commentary: CRISPR and the potential for human genome editing. Surgery 2019; 166:139-140. [PMID: 31030974 DOI: 10.1016/j.surg.2019.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 11/17/2022]
Affiliation(s)
- Paul C Kuo
- Department of Surgery, University of South Florida, Tampa, FL.
| |
Collapse
|
22
|
Kim J, Koo BK, Yoon KJ. Modeling Host-Virus Interactions in Viral Infectious Diseases Using Stem-Cell-Derived Systems and CRISPR/Cas9 Technology. Viruses 2019; 11:v11020124. [PMID: 30704043 PMCID: PMC6409779 DOI: 10.3390/v11020124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/14/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023] Open
Abstract
Pathologies induced by viral infections have undergone extensive study, with traditional model systems such as two-dimensional (2D) cell cultures and in vivo mouse models contributing greatly to our understanding of host-virus interactions. However, the technical limitations inherent in these systems have constrained efforts to more fully understand such interactions, leading to a search for alternative in vitro systems that accurately recreate in vivo physiology in order to advance the study of viral pathogenesis. Over the last decade, there have been significant technological advances that have allowed researchers to more accurately model the host environment when modeling viral pathogenesis in vitro, including induced pluripotent stem cells (iPSCs), adult stem-cell-derived organoid culture systems and CRISPR/Cas9-mediated genome editing. Such technological breakthroughs have ushered in a new era in the field of viral pathogenesis, where previously challenging questions have begun to be tackled. These include genome-wide analysis of host-virus crosstalk, identification of host factors critical for viral pathogenesis, and the study of viral pathogens that previously lacked a suitable platform, e.g., noroviruses, rotaviruses, enteroviruses, adenoviruses, and Zika virus. In this review, we will discuss recent advances in the study of viral pathogenesis and host-virus crosstalk arising from the use of iPSC, organoid, and CRISPR/Cas9 technologies.
Collapse
Affiliation(s)
- Jihoon Kim
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Ki-Jun Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|