1
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
2
|
The Annotation of Zebrafish Enhancer Trap Lines Generated with PB Transposon. Curr Issues Mol Biol 2022; 44:2614-2621. [PMID: 35735619 PMCID: PMC9221761 DOI: 10.3390/cimb44060178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
An enhancer trap (ET) mediated by a transposon is an effective method for functional gene research. Here, an ET system based on a PB transposon that carries a mini Krt4 promoter (the keratin4 minimal promoter from zebrafish) and the green fluorescent protein gene (GFP) has been used to produce zebrafish ET lines. One enhancer trap line with eye-specific expression GFP named EYE was used to identify the trapped enhancers and genes. Firstly, GFP showed a temporal and spatial expression pattern with whole-embryo expression at 6, 12, and 24 hpf stages and eye-specific expression from 2 to 7 dpf. Then, the genome insertion sites were detected by splinkerette PCR (spPCR). The Krt4-GFP was inserted into the fourth intron of the gene itgav (integrin, alpha V) in chromosome 9 of the zebrafish genome, with the GFP direction the same as that of the itgav gene. By the alignment of homologous gene sequences in different species, three predicted endogenous enhancers were obtained. The trapped endogenous gene itgav, whose overexpression is related to hepatocellular carcinoma, showed a similar expression pattern as GFP detected by in situ hybridization, which suggested that GFP and itgav were possibly regulated by the same enhancers. In short, the zebrafish enhancer trap lines generated by the PB transposon-mediated enhancer trap technology in this study were valuable resources as visual markers to study the regulators and genes. This work provides an efficient method to identify and isolate tissue-specific enhancer sequences.
Collapse
|
3
|
Kwon DH, Gim GM, Eom KH, Lee JH, Jang G. Application of transposon systems in the transgenesis of bovine somatic and germ cells. BMC Vet Res 2022; 18:156. [PMID: 35477562 PMCID: PMC9044889 DOI: 10.1186/s12917-022-03252-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background Several DNA transposons including PiggyBac (PB), Sleeping Beauty (SB), and Tol2 have been applied as effective means for of transgenesis in many species. Cattle are not typically experimental animals, and relatively little verification has been presented on this species. Thus, the goal here was to determine the applicability of three transposon systems in somatic and embryo cells in cattle, while also investigating which of the three systems is appropriate for each cell type. Green fluorescent protein (GFP)-expressing transposon systems were used for electroporation and microinjection in the somatic cells and embryo stage, respectively. After transfection, the GFP-positive cells or blastocysts were observed through fluorescence, while the transfection efficiency was calculated by FACS. Results In bovine somatic cells, the PB (63.97 ± 11.56) showed the highest efficiency of the three systems (SB: 50.74 ± 13.02 and Tol2: 16.55 ± 5.96). Conversely, Tol2 (75.00%) and SB (70.00%) presented a higher tendency in the embryonic cells compared to PB (42.86%). Conclusions These results demonstrate that these three transposon systems can be used in bovine somatic cells and embryos as gene engineering experimental methods. Moreover, they demonstrate which type of transposon system to apply depending on the cell type. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03252-1.
Collapse
Affiliation(s)
- Dong-Hyeok Kwon
- Laboratory of Theriogenology, College of Veterinary Medicine, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea, 08826.,BK21 PLUS program, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gyeong-Min Gim
- Laboratory of Theriogenology, College of Veterinary Medicine, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea, 08826.,BK21 PLUS program, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyeong-Hyeon Eom
- Laboratory of Theriogenology, College of Veterinary Medicine, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea, 08826.,BK21 PLUS program, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | | | - Goo Jang
- Laboratory of Theriogenology, College of Veterinary Medicine, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea, 08826. .,BK21 PLUS program, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea. .,LARTBio Inc, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Sandoval-Villegas N, Nurieva W, Amberger M, Ivics Z. Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping Beauty, piggyBac and Tol2 for Genome Engineering. Int J Mol Sci 2021; 22:ijms22105084. [PMID: 34064900 PMCID: PMC8151067 DOI: 10.3390/ijms22105084] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/19/2023] Open
Abstract
Transposons are mobile genetic elements evolved to execute highly efficient integration of their genes into the genomes of their host cells. These natural DNA transfer vehicles have been harnessed as experimental tools for stably introducing a wide variety of foreign DNA sequences, including selectable marker genes, reporters, shRNA expression cassettes, mutagenic gene trap cassettes, and therapeutic gene constructs into the genomes of target cells in a regulated and highly efficient manner. Given that transposon components are typically supplied as naked nucleic acids (DNA and RNA) or recombinant protein, their use is simple, safe, and economically competitive. Thus, transposons enable several avenues for genome manipulations in vertebrates, including transgenesis for the generation of transgenic cells in tissue culture comprising the generation of pluripotent stem cells, the production of germline-transgenic animals for basic and applied research, forward genetic screens for functional gene annotation in model species and therapy of genetic disorders in humans. This review describes the molecular mechanisms involved in transposition reactions of the three most widely used transposon systems currently available (Sleeping Beauty, piggyBac, and Tol2), and discusses the various parameters and considerations pertinent to their experimental use, highlighting the state-of-the-art in transposon technology in diverse genetic applications.
Collapse
Affiliation(s)
| | | | | | - Zoltán Ivics
- Correspondence: ; Tel.: +49-6103-77-6000; Fax: +49-6103-77-1280
| |
Collapse
|
5
|
Shen D, Song C, Miskey C, Chan S, Guan Z, Sang Y, Wang Y, Chen C, Wang X, Müller F, Ivics Z, Gao B. A native, highly active Tc1/mariner transposon from zebrafish (ZB) offers an efficient genetic manipulation tool for vertebrates. Nucleic Acids Res 2021; 49:2126-2140. [PMID: 33638993 PMCID: PMC7913693 DOI: 10.1093/nar/gkab045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
New genetic tools and strategies are currently under development to facilitate functional genomics analyses. Here, we describe an active member of the Tc1/mariner transposon superfamily, named ZB, which invaded the zebrafish genome very recently. ZB exhibits high activity in vertebrate cells, in the range of those of the widely used transposons piggyBac (PB), Sleeping Beauty (SB) and Tol2. ZB has a similar structural organization and target site sequence preference to SB, but a different integration profile with respect to genome-wide preference among mammalian functional annotation features. Namely, ZB displays a preference for integration into transcriptional regulatory regions of genes. Accordingly, we demonstrate the utility of ZB for enhancer trapping in zebrafish embryos and in the mouse germline. These results indicate that ZB may be a powerful tool for genetic manipulation in vertebrate model species.
Collapse
Affiliation(s)
- Dan Shen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Chengyi Song
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Shuheng Chan
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhongxia Guan
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yatong Sang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yali Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Cai Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaoyan Wang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ferenc Müller
- Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen 63225, Germany
| | - Bo Gao
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
6
|
Fine gene expression regulation by minor sequence variations downstream of the polyadenylation signal. Mol Biol Rep 2021; 48:1539-1547. [PMID: 33517473 DOI: 10.1007/s11033-021-06160-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022]
Abstract
The termination of transcription is a complex process that substantially contributes to gene regulation in eukaryotes. Previously, it was noted that a single cytosine deletion at the position + 32 bp relative to the single polyadenylation signal AAUAAA (hereafter the dC mutation) causes a 2-fold increase in the transcription level of the upstream eGFP reporter in mouse embryonic stem cells. Here, we analyzed the conservation of this phenomenon in immortalized mouse, human and drosophila cell lines and the influence of the dC mutation on the choice of the pre-mRNA cleavage sites. We have constructed dual-reporter plasmids to accurately measure the effect of the dC and other nearby located mutations on eGFP mRNA level by RT-qPCR. In this way, we found that the dC mutation leads to a 2-fold increase in the expression level of the upstream eGFP reporter gene in cultured mouse and human, but not in drosophila cells. In addition, 3' RACE analysis demonstrated that eGFP pre-mRNAs are cut at multiple positions between + 14 to + 31, and that the most proximal cleavage site becomes almost exclusively utilized in the presence of the dC mutation. We also identified new short sequence variations located within positions + 25.. + 40 and + 33.. + 48 that increase eGFP expression up to ~2-4-fold. Altogether, the positive effect of the dC mutation seems to be conserved in mouse embryonic stem cells, mouse embryonic 3T3 fibroblasts and human HEK293T cells. In the latter cells, the dC mutation appears to be involved in regulating pre-mRNA cleavage site selection. Finally, a multiplexed approach is proposed to identify motifs located downstream of cleavage site(s) that are essential for transcription termination.
Collapse
|
7
|
Chan S, Shen D, Sang Y, Wang S, Wang Y, Chen C, Gao B, Song C. Development of enhancer-trapping and -detection vectors mediated by the Tol2 transposon in zebrafish. PeerJ 2019; 7:e6862. [PMID: 31106068 PMCID: PMC6499061 DOI: 10.7717/peerj.6862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/28/2019] [Indexed: 01/02/2023] Open
Abstract
Enhancers are key transcriptional drivers of gene expression. The identification of enhancers in the genome is central for understanding gene-expression programs. Although transposon-mediated enhancer trapping (ET) is a powerful approach to the identification of enhancers in zebrafish, its efficiency varies considerably. To improve the ET efficiency, we constructed Tol2-mediated ET vectors with a reporter gene (mCherry) expression box driven by four minimal promoters (Gata, Myc, Krt4 and Oct4), respectively. The ET efficiency and expression background were compared among the four promoters by zebrafish embryo injection at the one-cell stage. The results showed that the Gata minimal promoter yielded the lowest basic expression and the second-highest trapping efficiency (44.6% at 12 hpf (hour post-fertilization) and 23.1% at 72 hpf, n = 305 and n = 307). The Krt4 promoter had the highest trapping efficiency (64% at 12 hpf and 67.1% at 72 hpf, n = 302 and n = 301) and the strongest basic expression. To detect enhancer activity, chicken 5′HS4 double insulators were cloned into the two ET vectors with the Gata or Krt4 minimal promoter, flanking the mCherry expression box. The resulting detection vectors were injected into zebrafish embryos. mCherry expression driven by the Gata promoter (about 5%, n = 301) was decreased significantly compared with that observed for embryos injected with the ET vectors (23% at 72 hpf, n = 308). These results suggest that the insulators block the genome-position effects and that this vector is fit for enhancer-activity evaluation. To assess the compatibility between the enhancers and the minimal promoters, four enhancers (CNS1, Z48, Hand2 and Hs769) were cloned upstream of the Gata or Beta-globin minimal promoter in the enhancer-activity-detection vectors. The resulting recombinant vectors were assayed by zebrafish embryo injection. We found that Z48 and CNS1 responded to the Gata minimal promoter, and that Hand2 only responded to the Beta-globin minimal promoter. In contrast, Hs769 did not respond to either the Gata or Beta-globin minimal promoters. These results suggest the existence of compatibility between enhancers and minimal promoters. This study represents a systematic approach to the discovery of optional ET and enhancer-detection vectors. We are eager to provide a superior tool for understanding functional genomics.
Collapse
Affiliation(s)
- Shuheng Chan
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Dan Shen
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Yatong Sang
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Saisai Wang
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Yali Wang
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Cai Chen
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Bo Gao
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| | - Chengyi Song
- Yangzhou University, Institute of Animal Mobilome and Genome, College of Animal Science & Technology, Yangzhou, Jiangsu, China
| |
Collapse
|