1
|
Mifsud DV, Kaňuchová Z, Ioppolo S, Herczku P, Traspas Muiña A, Sulik B, Rahul KK, Kovács STS, Hailey PA, McCullough RW, Mason NJ, Juhász Z. Ozone production in electron irradiated CO 2:O 2 ices. Phys Chem Chem Phys 2022; 24:18169-18178. [PMID: 35861183 DOI: 10.1039/d2cp01535h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The detection of ozone (O3) in the surface ices of Ganymede, Jupiter's largest moon, and of the Saturnian moons Rhea and Dione, has motivated several studies on the route of formation of this species. Previous studies have successfully quantified trends in the production of O3 as a result of the irradiation of pure molecular ices using ultraviolet photons and charged particles (i.e., ions and electrons), such as the abundances of O3 formed after irradiation at different temperatures or using different charged particles. In this study, we extend such results by quantifying the abundance of O3 as a result of the 1 keV electron irradiation of a series of 14 stoichiometrically distinct CO2:O2 astrophysical ice analogues at 20 K. By using mid-infrared spectroscopy as our primary analytical tool, we have also been able to perform a spectral analysis of the asymmetric stretching mode of solid O3 and the variation in its observed shape and profile among the investigated ice mixtures. Our results are important in the context of better understanding the surface composition and chemistry of icy outer Solar System objects, and may thus be of use to future interplanetary space missions such as the ESA Jupiter Icy Moons Explorer and the NASA Europa Clipper missions, as well as the recently launched NASA James Webb Space Telescope.
Collapse
Affiliation(s)
- Duncan V Mifsud
- Centre for Astrophysics and Planetary Science, School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK. .,Institute for Nuclear Research (Atomki), Debrecen H-4026, Hungary.
| | - Zuzana Kaňuchová
- Astronomical Institute, Slovak Academy of Sciences, Tatranská Lomnica SK-059 60, Slovakia.
| | - Sergio Ioppolo
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK.
| | - Péter Herczku
- Institute for Nuclear Research (Atomki), Debrecen H-4026, Hungary.
| | - Alejandra Traspas Muiña
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK.
| | - Béla Sulik
- Institute for Nuclear Research (Atomki), Debrecen H-4026, Hungary.
| | - K K Rahul
- Institute for Nuclear Research (Atomki), Debrecen H-4026, Hungary.
| | | | - Perry A Hailey
- Centre for Astrophysics and Planetary Science, School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK.
| | - Robert W McCullough
- Department of Physics and Astronomy, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Nigel J Mason
- Centre for Astrophysics and Planetary Science, School of Physical Sciences, University of Kent, Canterbury CT2 7NH, UK.
| | - Zoltán Juhász
- Institute for Nuclear Research (Atomki), Debrecen H-4026, Hungary.
| |
Collapse
|