1
|
Flume Experiments on Flow Analysis and Energy Reduction through a Compound Tsunami Mitigation System with a Seaward Embankment and Landward Vegetation over a Mound. GEOSCIENCES 2021. [DOI: 10.3390/geosciences11020090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As a countermeasure against tsunami inundation, the present study conducted a series of laboratory experiments using a compound mitigation system in which a seaward embankment (E) followed by landward coastal vegetation (V) over a mound (M) (EMV) was investigated in supercritical flow conditions. The changes of flow around the mitigation system and energy reduction were clarified under varying conditions of mound height and vegetation density. Cases of an embankment followed by only a mound (EMNV) were also considered for comparison. Experimental results showed that three basic types of flow structures were observed within the mitigation system in EMV cases. A water cushion was created within the mitigation system mainly due to the combined effects of the mound and vegetation. It significantly reduced the maximum total energy in EMV cases by approximately 41–66%, whereas in EMNV cases, the maximum energy reduction was found to be 23–65%. Increments in both mound height and vegetation density increased the intensity of the water cushion within the mitigation system by offering more drag and reflecting the flow, and hence, significantly reduced the energy of the flow.
Collapse
|
2
|
Estimating Tsunami Economic Losses of Okinawa Island with Multi-Regional-Input-Output Modeling. GEOSCIENCES 2019. [DOI: 10.3390/geosciences9080349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Understanding the impacts of tsunamis, especially in terms of damage and losses, is important for disaster mitigation and management. The aim of this study is to present our estimations of the potential losses from tsunami damage on Okinawa Island. We combine the use of a tsunami hazard map and our proposed economic loss model to estimate the potential losses that would be sustained by Okinawa Island in the event of a tsunami. First, to produce the tsunami hazard map, we calculated tsunami flow characteristics using the mathematical model TUNAMI-N2 and incorporating 6 earthquake fault scenarios around the study area. The earthquake scenarios are based on historical records along the Ryukyu Trench and the Okinawa. The resulting inundation map is overlaid with economic land use type and topography maps to identify vulnerable regions, which are then employed to compute potential economic losses. Second, we used our proposed economic model for this study area to calculate the potential losses that would be sustained in these vulnerable regions. Our economic model extends the multi-regional-input-output (MRIO) model, where the economic values of industrial sectors are scaled to correlate with land use and topography types (coastal and inland areas) to calculate losses through the Chenery–Moses estimation method. Direct losses can be estimated from the total input of the MRIO table, while indirect losses are computed from the direct losses and interaction parameter of the MRIO table. The interaction parameter is formed by linear programming and calculated using the Leontief methodology. Our results show that the maximum total damaged area under the 6 earthquake scenarios is approximately 30 km2. Inundation ranging from 2.0 to 5.0 m in depth covers the largest area of approximately 10 km2 and is followed by areas with inundation depths of 1.0–2.0 m and >5.0 m. Our findings show that direct losses will occur, while indirect losses are only approximately 56% that of direct losses. This approach could be applied to other areas and tsunami scenarios, which will aid disaster management and adaptation policies.
Collapse
|