1
|
Abstract
Gravitational lensing has been identified as a powerful tool to address fundamental problems in astrophysics at different scales, ranging from exoplanet identification to dark energy and dark matter characterization in cosmology. Image simulations have played a fundamental role in the realization of the full potential of gravitational lensing by providing a means to address needs such as systematic error characterization, pipeline testing, calibration analyses, code validation, and model development. We present a general overview of the generation and applications of image simulations in strong and weak gravitational lensing.
Collapse
|
2
|
A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? GEOSCIENCES 2018. [DOI: 10.3390/geosciences8100362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
“Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST.
Collapse
|