1
|
Hermans M, Stranne C, Broman E, Sokolov A, Roth F, Nascimento FJA, Mörth CM, Ten Hietbrink S, Sun X, Gustafsson E, Gustafsson BG, Norkko A, Jilbert T, Humborg C. Ebullition dominates methane emissions in stratified coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174183. [PMID: 38909808 DOI: 10.1016/j.scitotenv.2024.174183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Coastal areas are an important source of methane (CH4). However, the exact origins of CH4 in the surface waters of coastal regions, which in turn drive sea-air emissions, remain uncertain. To gain a comprehensive understanding of the current and future climate change feedbacks, it is crucial to identify these CH4 sources and processes that regulate its formation and oxidation. This study investigated coastal CH4 dynamics by comparing water column data from six stations located in the brackish Tvärminne Archipelago, Baltic Sea. The sediment biogeochemistry and microbiology were further investigated at two stations (i.e., nearshore and offshore). These stations differed in terms of stratification, bottom water redox conditions, and organic matter loading. At the nearshore station, CH4 diffusion from the sediment into the water column was negligible, because nearly all CH4 was oxidized within the upper sediment column before reaching the sediment surface. On the other hand, at the offshore station, there was significant benthic diffusion of CH4, albeit the majority underwent oxidation before reaching the sediment-water interface, due to shoaling of the sulfate methane transition zone (SMTZ). The potential contribution of CH4 production in the water column was evaluated and was found to be negligible. After examining the isotopic signatures of δ13C-CH4 across the sediment and water column, it became apparent that the surface water δ13C-CH4 values observed in areas with thermal stratification could not be explained by diffusion, advective fluxes, nor production in the water column. In fact, these values bore a remarkable resemblance to those detected below the SMTZ. This supports the hypothesis that the source of CH4 in surface waters is more likely to originate from ebullition than diffusion in stratified brackish coastal systems.
Collapse
Affiliation(s)
- Martijn Hermans
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden; Environmental Geochemistry Group, Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki, Finland.
| | - Christian Stranne
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden; Department of Geological Sciences, Stockholm University, Stockholm, Sweden; Bolin Center for Climate Research, Stockholm University, Stockholm, Sweden
| | - Elias Broman
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden; Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | | - Florian Roth
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden; Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Francisco J A Nascimento
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden; Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Carl-Magnus Mörth
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden
| | - Sophie Ten Hietbrink
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden; Bolin Center for Climate Research, Stockholm University, Stockholm, Sweden
| | - Xiaole Sun
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden; Center for Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | - Alf Norkko
- Baltic Sea Centre, Stockholm University, Stockholm, Sweden; Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Tom Jilbert
- Environmental Geochemistry Group, Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
2
|
Dulf EH, Festila C. Sensors for Cryogenic Isotope-Separation Column. SENSORS 2020; 20:s20143890. [PMID: 32668627 PMCID: PMC7411749 DOI: 10.3390/s20143890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/17/2020] [Accepted: 07/11/2020] [Indexed: 11/17/2022]
Abstract
Cryogenic isotope-separation equipment is special, encountered in relative few research centers in the world. In addition to the main equipment used in the operation column, a broad range of measuring devices and actuators are involved in the technological process. The proper sensors and transducers exhibit special features; therefore, common, industrial versions cannot be used. Three types of original sensors with electronic adapters are presented in the present study: a sensor for the liquid carbon monoxide level in the boiler, a sensor for the liquid nitrogen level in the condenser and a sensor for the electrical power dissipated in the boiler. The integration of these sensors in the pilot equipment is needed for comprehensive system monitoring and control. The sensors were tested on the experimental equipment from the National Institute for Research and Development of Isotopic and Molecular Technologies from Cluj-Napoca.
Collapse
Affiliation(s)
- Eva H. Dulf
- Department of Automation, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Memorandumului Str. 28, 400014 Cluj-Napoca, Romania;
- Physiological Controls Research Center, Óbuda University, H-1034 Budapest, Hungary
- Correspondence:
| | - Clement Festila
- Department of Automation, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Memorandumului Str. 28, 400014 Cluj-Napoca, Romania;
| |
Collapse
|