1
|
Lo CM, Wang CC, Hung PH. Interactive content-based image retrieval with deep learning for CT abdominal organ recognition. Phys Med Biol 2024; 69:045004. [PMID: 38232396 DOI: 10.1088/1361-6560/ad1f86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Objective.Recognizing the most relevant seven organs in an abdominal computed tomography (CT) slice requires sophisticated knowledge. This study proposed automatically extracting relevant features and applying them in a content-based image retrieval (CBIR) system to provide similar evidence for clinical use.Approach.A total of 2827 abdominal CT slices, including 638 liver, 450 stomach, 229 pancreas, 442 spleen, 362 right kidney, 424 left kidney and 282 gallbladder tissues, were collected to evaluate the proposed CBIR in the present study. Upon fine-tuning, high-level features used to automatically interpret the differences among the seven organs were extracted via deep learning architectures, including DenseNet, Vision Transformer (ViT), and Swin Transformer v2 (SwinViT). Three images with different annotations were employed in the classification and query.Main results.The resulting performances included the classification accuracy (94%-99%) and retrieval result (0.98-0.99). Considering global features and multiple resolutions, SwinViT performed better than ViT. ViT also benefited from a better receptive field to outperform DenseNet. Additionally, the use of hole images can obtain almost perfect results regardless of which deep learning architectures are used.Significance.The experiment showed that using pretrained deep learning architectures and fine-tuning with enough data can achieve successful recognition of seven abdominal organs. The CBIR system can provide more convincing evidence for recognizing abdominal organs via similarity measurements, which could lead to additional possibilities in clinical practice.
Collapse
Affiliation(s)
- Chung-Ming Lo
- Graduate Institute of Library, Information and Archival Studies, National Chengchi University, Taipei, Taiwan
| | - Chi-Cheng Wang
- Department of Radiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Peng-Hsiang Hung
- Department of Radiology, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Lo CM, Jiang JK, Lin CC. Detecting microsatellite instability in colorectal cancer using Transformer-based colonoscopy image classification and retrieval. PLoS One 2024; 19:e0292277. [PMID: 38271352 PMCID: PMC10810505 DOI: 10.1371/journal.pone.0292277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/15/2023] [Indexed: 01/27/2024] Open
Abstract
Colorectal cancer (CRC) is a major global health concern, with microsatellite instability-high (MSI-H) being a defining characteristic of hereditary nonpolyposis colorectal cancer syndrome and affecting 15% of sporadic CRCs. Tumors with MSI-H have unique features and better prognosis compared to MSI-L and microsatellite stable (MSS) tumors. This study proposed establishing a MSI prediction model using more available and low-cost colonoscopy images instead of histopathology. The experiment utilized a database of 427 MSI-H and 1590 MSS colonoscopy images and vision Transformer (ViT) with different feature training approaches to establish the MSI prediction model. The accuracy of combining pre-trained ViT features was 84% with an area under the receiver operating characteristic curve of 0.86, which was better than that of DenseNet201 (80%, 0.80) in the experiment with support vector machine. The content-based image retrieval (CBIR) approach showed that ViT features can obtain a mean average precision of 0.81 compared to 0.79 of DenseNet201. ViT reduced the issues that occur in convolutional neural networks, including limited receptive field and gradient disappearance, and may be better at interpreting diagnostic information around tumors and surrounding tissues. By using CBIR, the presentation of similar images with the same MSI status would provide more convincing deep learning suggestions for clinical use.
Collapse
Affiliation(s)
- Chung-Ming Lo
- Graduate Institute of Library, Information and Archival Studies, National Chengchi University, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Department of Surgery, Division of Colon and Rectal Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Chi Lin
- Department of Surgery, Division of Colon and Rectal Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
3
|
Lo CM, Syu ZS. Analyzing drama metadata through machine learning to gain insights into social information dissemination patterns. PLoS One 2023; 18:e0288932. [PMID: 38032993 PMCID: PMC10688626 DOI: 10.1371/journal.pone.0288932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/03/2023] [Indexed: 12/02/2023] Open
Abstract
TV drama, through synchronization with social phenomena, allows the audience to resonate with the characters and desire to watch the next episode. In particular, drama ratings can be the criterion for advertisers to invest in ad placement and a predictor of subsequent economic efficiency in the surrounding areas. To identify the dissemination patterns of social information about dramas, this study used machine learning to predict drama ratings and the contribution of various drama metadata, including broadcast year, broadcast season, TV stations, day of the week, broadcast time slot, genre, screenwriters, status as an original work or sequel, actors and facial features on posters. A total of 800 Japanese TV dramas broadcast during prime time between 2003 and 2020 were collected for analysis. Four machine learning classifiers, including naïve Bayes, artificial neural network, support vector machine, and random forest, were used to combine the metadata. With facial features, the accuracy of the random forest model increased from 75.80% to 77.10%, which shows that poster information can improve the accuracy of the overall predicted ratings. Using only posters to predict ratings with a convolutional neural network still obtained an accuracy rate of 71.70%. More insights about the correlations between drama metadata and social information dissemination patterns were explored.
Collapse
Affiliation(s)
- Chung-Ming Lo
- Graduate Institute of Library, Information and Archival Studies, National Chengchi University, Taipei, Taiwan
| | - Zih-Sin Syu
- Graduate Institute of Library, Information and Archival Studies, National Chengchi University, Taipei, Taiwan
| |
Collapse
|
4
|
Lo CM, Yang YW, Lin JK, Lin TC, Chen WS, Yang SH, Chang SC, Wang HS, Lan YT, Lin HH, Huang SC, Cheng HH, Jiang JK, Lin CC. Modeling the survival of colorectal cancer patients based on colonoscopic features in a feature ensemble vision transformer. Comput Med Imaging Graph 2023; 107:102242. [PMID: 37172354 DOI: 10.1016/j.compmedimag.2023.102242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/14/2023]
Abstract
The prognosis of patients with colorectal cancer (CRC) mostly relies on the classic tumor node metastasis (TNM) staging classification. A more accurate and convenient prediction model would provide a better prognosis and assist in treatment. From May 2014 to December 2017, patients who underwent an operation for CRC were enrolled. The proposed feature ensemble vision transformer (FEViT) used ensemble classifiers to benefit the combinations of relevant colonoscopy features from the pretrained vision transformer and clinical features, including sex, age, family history of CRC, and tumor location, to establish the prognostic model. A total of 1729 colonoscopy images were enrolled in the current retrospective study. For the prediction of patient survival, FEViT achieved an accuracy of 94 % with an area under the receiver operating characteristic curve of 0.93, which was better than the TNM staging classification (90 %, 0.83) in the experiment. FEViT reduced the limited receptive field and gradient disappearance in the conventional convolutional neural network and was a relatively effective and efficient procedure. The promising accuracy of FEViT in modeling survival makes the prognosis of CRC patients more predictable and practical.
Collapse
Affiliation(s)
- Chung-Ming Lo
- Graduate Institute of Library, Information and Archival Studies, National Chengchi University, Taipei, Taiwan
| | - Yi-Wen Yang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Kou Lin
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Chen Lin
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Shone Chen
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shung-Haur Yang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Surgery, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - Shih-Ching Chang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Huann-Sheng Wang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuan-Tzu Lan
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hung-Hsin Lin
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Chieh Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hou-Hsuan Cheng
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Chi Lin
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Krenzer A, Heil S, Fitting D, Matti S, Zoller WG, Hann A, Puppe F. Automated classification of polyps using deep learning architectures and few-shot learning. BMC Med Imaging 2023; 23:59. [PMID: 37081495 PMCID: PMC10120204 DOI: 10.1186/s12880-023-01007-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/24/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Colorectal cancer is a leading cause of cancer-related deaths worldwide. The best method to prevent CRC is a colonoscopy. However, not all colon polyps have the risk of becoming cancerous. Therefore, polyps are classified using different classification systems. After the classification, further treatment and procedures are based on the classification of the polyp. Nevertheless, classification is not easy. Therefore, we suggest two novel automated classifications system assisting gastroenterologists in classifying polyps based on the NICE and Paris classification. METHODS We build two classification systems. One is classifying polyps based on their shape (Paris). The other classifies polyps based on their texture and surface patterns (NICE). A two-step process for the Paris classification is introduced: First, detecting and cropping the polyp on the image, and secondly, classifying the polyp based on the cropped area with a transformer network. For the NICE classification, we design a few-shot learning algorithm based on the Deep Metric Learning approach. The algorithm creates an embedding space for polyps, which allows classification from a few examples to account for the data scarcity of NICE annotated images in our database. RESULTS For the Paris classification, we achieve an accuracy of 89.35 %, surpassing all papers in the literature and establishing a new state-of-the-art and baseline accuracy for other publications on a public data set. For the NICE classification, we achieve a competitive accuracy of 81.13 % and demonstrate thereby the viability of the few-shot learning paradigm in polyp classification in data-scarce environments. Additionally, we show different ablations of the algorithms. Finally, we further elaborate on the explainability of the system by showing heat maps of the neural network explaining neural activations. CONCLUSION Overall we introduce two polyp classification systems to assist gastroenterologists. We achieve state-of-the-art performance in the Paris classification and demonstrate the viability of the few-shot learning paradigm in the NICE classification, addressing the prevalent data scarcity issues faced in medical machine learning.
Collapse
Affiliation(s)
- Adrian Krenzer
- Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070, Würzburg, Germany.
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.
| | - Stefan Heil
- Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070, Würzburg, Germany
| | - Daniel Fitting
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Safa Matti
- Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070, Würzburg, Germany
| | - Wolfram G Zoller
- Department of Internal Medicine and Gastroenterology, Katharinenhospital, Kriegsbergstrasse 60, 70174, Stuttgart, Germany
| | - Alexander Hann
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Frank Puppe
- Department of Artificial Intelligence and Knowledge Systems, Julius-Maximilians University of Würzburg, Sanderring 2, 97070, Würzburg, Germany
| |
Collapse
|
6
|
ELKarazle K, Raman V, Then P, Chua C. Detection of Colorectal Polyps from Colonoscopy Using Machine Learning: A Survey on Modern Techniques. SENSORS (BASEL, SWITZERLAND) 2023; 23:1225. [PMID: 36772263 PMCID: PMC9953705 DOI: 10.3390/s23031225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Given the increased interest in utilizing artificial intelligence as an assistive tool in the medical sector, colorectal polyp detection and classification using deep learning techniques has been an active area of research in recent years. The motivation for researching this topic is that physicians miss polyps from time to time due to fatigue and lack of experience carrying out the procedure. Unidentified polyps can cause further complications and ultimately lead to colorectal cancer (CRC), one of the leading causes of cancer mortality. Although various techniques have been presented recently, several key issues, such as the lack of enough training data, white light reflection, and blur affect the performance of such methods. This paper presents a survey on recently proposed methods for detecting polyps from colonoscopy. The survey covers benchmark dataset analysis, evaluation metrics, common challenges, standard methods of building polyp detectors and a review of the latest work in the literature. We conclude this paper by providing a precise analysis of the gaps and trends discovered in the reviewed literature for future work.
Collapse
Affiliation(s)
- Khaled ELKarazle
- School of Information and Communication Technologies, Swinburne University of Technology, Sarawak Campus, Kuching 93350, Malaysia
| | - Valliappan Raman
- Department of Artificial Intelligence and Data Science, Coimbatore Institute of Technology, Coimbatore 641014, India
| | - Patrick Then
- School of Information and Communication Technologies, Swinburne University of Technology, Sarawak Campus, Kuching 93350, Malaysia
| | - Caslon Chua
- Department of Computer Science and Software Engineering, Swinburne University of Technology, Melbourne 3122, Australia
| |
Collapse
|