1
|
Wen T, Li JH, Wang Q, Gao YY, Hao GF, Song BA. Thermal imaging: The digital eye facilitates high-throughput phenotyping traits of plant growth and stress responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165626. [PMID: 37481085 DOI: 10.1016/j.scitotenv.2023.165626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Plant phenotyping is important for plants to cope with environmental changes and ensure plant health. Imaging techniques are perceived as the most critical and reliable tools for studying plant phenotypes. Thermal imaging has opened up new opportunities for nondestructive imaging of plant phenotyping. However, a comprehensive summary of thermal imaging in plant phenotyping is still lacking. Here we discuss the progress and future prospects of thermal imaging for assessing plant growth and stress responses. First, we classify thermal imaging into ground-based and aerial platforms based on their adaptability to different experimental environments (including laboratory, greenhouse, and field). It is convenient to collect phenotypic information of different dimensions. Second, in order to enhance the efficiency of thermal image processing, automatic algorithms based on deep learning are employed instead of traditional manual methods, greatly reducing the time cost of experiments. Considering its ease of implementation, handling and instant response, thermal imaging has been widely used in research on environmental stress, crop yield, and seed vigor. We have found that thermal imaging can detect thermal energy dissipation caused by living organisms (e.g., pests, viruses, bacteria, fungi, and oomycetes), enabling early disease diagnosis. It also recognizes changes leaf surface temperatures resulting from reduced transpiration rates caused by nutrient deficiency, drought, salinity, or freezing. Furthermore, thermal imaging predicts crop yield under different water states and forecasts the viability of dormant seeds after water absorption by monitoring temperature changes in the seeds. This work will assist biologists and agronomists in studying plant phenotypes and serve a guide for breeders to develop high-yielding, stress-tolerant, and superior crops.
Collapse
Affiliation(s)
- Ting Wen
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Jian-Hong Li
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Qi Wang
- State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, PR China.
| | - Yang-Yang Gao
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Bao-An Song
- National Key Laboratory of Green Pesticide, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
2
|
Abebe AM, Kim Y, Kim J, Kim SL, Baek J. Image-Based High-Throughput Phenotyping in Horticultural Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:2061. [PMID: 37653978 PMCID: PMC10222289 DOI: 10.3390/plants12102061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 09/02/2023]
Abstract
Plant phenotyping is the primary task of any plant breeding program, and accurate measurement of plant traits is essential to select genotypes with better quality, high yield, and climate resilience. The majority of currently used phenotyping techniques are destructive and time-consuming. Recently, the development of various sensors and imaging platforms for rapid and efficient quantitative measurement of plant traits has become the mainstream approach in plant phenotyping studies. Here, we reviewed the trends of image-based high-throughput phenotyping methods applied to horticultural crops. High-throughput phenotyping is carried out using various types of imaging platforms developed for indoor or field conditions. We highlighted the applications of different imaging platforms in the horticulture sector with their advantages and limitations. Furthermore, the principles and applications of commonly used imaging techniques, visible light (RGB) imaging, thermal imaging, chlorophyll fluorescence, hyperspectral imaging, and tomographic imaging for high-throughput plant phenotyping, are discussed. High-throughput phenotyping has been widely used for phenotyping various horticultural traits, which can be morphological, physiological, biochemical, yield, biotic, and abiotic stress responses. Moreover, the ability of high-throughput phenotyping with the help of various optical sensors will lead to the discovery of new phenotypic traits which need to be explored in the future. We summarized the applications of image analysis for the quantitative evaluation of various traits with several examples of horticultural crops in the literature. Finally, we summarized the current trend of high-throughput phenotyping in horticultural crops and highlighted future perspectives.
Collapse
Affiliation(s)
| | | | | | | | - Jeongho Baek
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
3
|
Sharma N, Banerjee BP, Hayden M, Kant S. An Open-Source Package for Thermal and Multispectral Image Analysis for Plants in Glasshouse. PLANTS (BASEL, SWITZERLAND) 2023; 12:317. [PMID: 36679030 PMCID: PMC9866171 DOI: 10.3390/plants12020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Advanced plant phenotyping techniques to measure biophysical traits of crops are helping to deliver improved crop varieties faster. Phenotyping of plants using different sensors for image acquisition and its analysis with novel computational algorithms are increasingly being adapted to measure plant traits. Thermal and multispectral imagery provides novel opportunities to reliably phenotype crop genotypes tested for biotic and abiotic stresses under glasshouse conditions. However, optimization for image acquisition, pre-processing, and analysis is required to correct for optical distortion, image co-registration, radiometric rescaling, and illumination correction. This study provides a computational pipeline that optimizes these issues and synchronizes image acquisition from thermal and multispectral sensors. The image processing pipeline provides a processed stacked image comprising RGB, green, red, NIR, red edge, and thermal, containing only the pixels present in the object of interest, e.g., plant canopy. These multimodal outputs in thermal and multispectral imageries of the plants can be compared and analysed mutually to provide complementary insights and develop vegetative indices effectively. This study offers digital platform and analytics to monitor early symptoms of biotic and abiotic stresses and to screen a large number of genotypes for improved growth and productivity. The pipeline is packaged as open source and is hosted online so that it can be utilized by researchers working with similar sensors for crop phenotyping.
Collapse
Affiliation(s)
- Neelesh Sharma
- Agriculture Victoria, Grains Innovation Park, 110 Natimuk Rd, Horsham, VIC 3400, Australia
| | - Bikram Pratap Banerjee
- Agriculture Victoria, Grains Innovation Park, 110 Natimuk Rd, Horsham, VIC 3400, Australia
| | - Matthew Hayden
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3083, Australia
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, 110 Natimuk Rd, Horsham, VIC 3400, Australia
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, 5 Ring Road, Melbourne, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3083, Australia
| |
Collapse
|
4
|
Fenstemaker S, Cho J, McCoy JE, Mercer KL, Francis DM. Selection strategies to introgress water deficit tolerance derived from Solanum galapagense accession LA1141 into cultivated tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:947538. [PMID: 35968091 PMCID: PMC9366722 DOI: 10.3389/fpls.2022.947538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Crop wild relatives have been used as a source of genetic diversity for over one hundred years. The wild tomato relative Solanum galapagense accession LA1141 demonstrates the ability to tolerate deficit irrigation, making it a potential resource for crop improvement. Accessing traits from LA1141 through introgression may improve the response of cultivated tomatoes grown in water-limited environments. Canopy temperature is a proxy for physiological traits which are challenging to measure efficiently and may be related to water deficit tolerance. We optimized phenotypic evaluation based on variance partitioning and further show that objective phenotyping methods coupled with genomic prediction lead to gain under selection for water deficit tolerance. The objectives of this work were to improve phenotyping workflows for measuring canopy temperature, mapping quantitative trait loci (QTLs) from LA1141 that contribute to water deficit tolerance and comparing selection strategies. The phenotypic variance attributed to genetic causes for canopy temperature was higher when estimated from thermal images relative to estimates based on an infrared thermometer. Composite interval mapping using BC2S3 families, genotyped with single nucleotide polymorphisms, suggested that accession LA1141 contributed alleles that lower canopy temperature and increase plant turgor under water deficit. QTLs for lower canopy temperature were mapped to chromosomes 1 and 6 and explained between 6.6 and 9.5% of the total phenotypic variance. QTLs for higher leaf turgor were detected on chromosomes 5 and 7 and explained between 6.8 and 9.1% of the variance. We advanced tolerant BC2S3 families to the BC2S5 generation using selection indices based on phenotypic values and genomic estimated breeding values (GEBVs). Phenotypic, genomic, and combined selection strategies demonstrated gain under selection and improved performance compared to randomly advanced BC2S5 progenies. Leaf turgor, canopy temperature, stomatal conductance, and vapor pressure deficit (VPD) were evaluated and compared in BC2S5 progenies grown under deficit irrigation. Progenies co-selected for phenotypic values and GEBVs wilted less, had significantly lower canopy temperature, higher stomatal conductance, and lower VPD than randomly advanced lines. The fruit size of water deficit tolerant selections was small compared to the recurrent parent. However, lines with acceptable yield, canopy width, and quality parameters were recovered. These results suggest that we can create selection indices to improve water deficit tolerance in a recurrent parent background, and additional crossing and evaluation are warranted.
Collapse
Affiliation(s)
- Sean Fenstemaker
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, United States
| | - Jin Cho
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, United States
| | - Jack E. McCoy
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Kristin L. Mercer
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - David M. Francis
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, United States
| |
Collapse
|