1
|
Crestani G, Večeřová K, Cunningham N, Badmus UO, Urban O, Jansen MAK. Comprehensive Modulation of Secondary Metabolites in Terpenoid-Accumulating Mentha spicata L. via UV Radiation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1746. [PMID: 38999586 PMCID: PMC11243551 DOI: 10.3390/plants13131746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024]
Abstract
In plants, secondary metabolites change in response to environmental conditions. These changes co-regulate resilience to stressful environmental conditions, plant growth and development, and interactions between plants and the wider ecosystem, while also affecting soil carbon storage and atmospheric and climatic conditions. The objective of this study was to determine the association between UV exposure and the contents of key metabolites, including amino acids, phenolics, flavonoids, terpenoids, carotenoids, tocopherols, and phytosterols. Mentha spicata plantlets were grown in tissue culture boxes for 30 days and then exposed to a low dose of broadband UV-B (291-315 nm; 2.8 kJm-2 biologically effective UV) enriched light for eight days. Metabolite contents were quantified either immediately after the final UV exposure, or after seven days of recovery under photosynthetically active radiation. It was found that UV promoted the production of flavonoids (1.8-fold) ahead of phenolic acids (unchanged). Furthermore, the majority of monoterpenes and sesquiterpenes, constituents of valuable mint essential oil, were significantly increased through UV treatment (up to 90-fold for α-linalool). In contrast, the contents of carotenoids and tocopherols did not increase following UV exposure. A comparison between plants sampled immediately after UV exposure and after seven days of recovery showed that there was an overall increase in the content of carotenoids, mono- and sesquiterpenes, phenolics, and amino acids following recovery, while the contents of sterols and tocopherols decreased. These UV-induced changes in metabolite profile may have important consequences for agriculture, ecology, and even the global climate, and they also provide an exciting opportunity to enhance crop value, facilitating the development of improved products with higher levels of essential oils and added benefits of enhanced flavour, colour, and bioactive content.
Collapse
Affiliation(s)
- Gaia Crestani
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
| | - Kristýna Večeřová
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Natalie Cunningham
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
| | - Uthman O. Badmus
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Marcel A. K. Jansen
- School of Biological, Earth and Environmental Science, Environmental Research Institute, University College Cork, North Mall Campus, T23 TK30 Cork, Ireland
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
2
|
Shinali TS, Zhang Y, Altaf M, Nsabiyeze A, Han Z, Shi S, Shang N. The Valorization of Wastes and Byproducts from Cruciferous Vegetables: A Review on the Potential Utilization of Cabbage, Cauliflower, and Broccoli Byproducts. Foods 2024; 13:1163. [PMID: 38672834 PMCID: PMC11049176 DOI: 10.3390/foods13081163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The management of vegetable waste and byproducts is a global challenge in the agricultural industry. As a commonly consumed vegetable crop, cruciferous vegetables marked higher amounts of wastage during their supply chain processes, with a significant contribution from cabbage, cauliflower, and broccoli. Therefore, the sustainable and resource-efficient utilization of discarded materials is crucial. This review explores potential applications of cruciferous vegetable waste and byproducts, spotlighting cabbage, cauliflower, and broccoli in food, medicinal, and other industries. Their significance of being utilized in value-added applications is addressed, emphasizing important biomolecules, technologies involved in the valorization process, and future aspects of practical applications. Cabbage, cauliflower, and broccoli generate waste and low-processing byproducts, including leaves, stems, stalks, and rot. Most of them contain high-value biomolecules, including bioactive proteins and phytochemicals, glucosinolates, flavonoids, anthocyanins, carotenoids, and tocopherols. Interestingly, isothiocyanates, derived from glucosinolates, exhibit strong anti-inflammatory and anticancer activity through various interactions with cellular molecules and the modulation of key signaling pathways in cells. Therefore, these cruciferous-based residues can be valorized efficiently through various innovative extraction and biotransformation techniques, as well as employing different biorefinery approaches. This not only minimizes environmental impact but also contributes to the development of high-value-added products for food, medicinal, and other related industries.
Collapse
Affiliation(s)
- Tharushi S. Shinali
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
| | - Yiying Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
| | - Moater Altaf
- College of Biological Sciences, China Agricultural University, Beijing 100083, China;
| | - Assa Nsabiyeze
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
| | - Zixin Han
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
| | - Shuyuan Shi
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Nan Shang
- College of Engineering, China Agricultural University, Beijing 100083, China; (T.S.S.); (Y.Z.); (A.N.); (Z.H.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Handa AP, Vian A, Singh HP, Kohli RK, Kaur S, Batish DR. Effect of 2850 MHz electromagnetic field radiation on the early growth, antioxidant activity, and secondary metabolite profile of red and green cabbage (Brassica oleracea L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7465-7480. [PMID: 38159189 DOI: 10.1007/s11356-023-31434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
The proliferation of wireless and other telecommunications equipment brought about by technological advances in the communication industry has substantially increased the radiofrequency radiation levels in the environment. The emphasis is, therefore, placed on investigating the potential impacts of radiofrequency radiation on biota. In this work, the impact of 2850 MHz electromagnetic field radiation (EMF-r) on early development, photosynthetic pigments, and the metabolic profile of two Brassica oleracea L. cultivars (red and green cabbage) was studied. On a daily basis for seven days, seedlings were exposed to homogeneous EMF-r for one, two, and four hours, and observations were carried out at 0-h, 1-h, and 24-h following the final dose. Irrespective of the duration of harvest, exposure to EMF-r resulted in a dose-dependent reduction in both root (from 6.3 cm to 4.0 cm in red; 6.1 cm to 3.8 cm in green) and shoot lengths (from 5.3 cm to ⁓3.1 cm in red; 5.1 cm to 3.1 cm in green), as well as a decrease in biomass (from 2.9 mg to ⁓1.1 mg in red; 2.5 to 0.9 mg in green) of the seedlings when compared to control samples. Likewise, the chlorophyll (from 6.09 to ⁓4.94 mg g-1 d.wt in red; 7.37 to 6.05 mg g-1 d.wt. in green) and carotenoid (from 1.49 to 1.19 mg g-1 d.wt. in red; 1.14 to 0.51 mg g-1 d.wt. in green) contents of both cultivars decreased significantly when compared to the control. Additionally, the contents of phenolic (28.99‒45.52 mg GAE g-1 in red; 25.49‒33.76 mg GAE g-1 in green), flavonoid (21.7‒31.8 mg QE g-1 in red; 12.1‒19.0 mg QE g-1 in green), and anthocyanin (28.8‒43.6 mg per 100 g d.wt. in red; 1.1‒2.6 mg per 100 g d.wt. in green) in both red and green cabbage increased with exposure duration. EMF-r produced oxidative stress in the exposed samples of both cabbage cultivars, as demonstrated by dose-dependent increases in the total antioxidant activity (1.33‒2.58 mM AAE in red; 1.29‒2.22 mM AAE in green), DPPH activity (12.96‒78.33% in red; 9.62‒67.73% in green), H2O2 content (20.0‒77.15 nM g-1 f.wt. in red; 14.28‒64.29 nM g-1 f.wt. in green), and MDA content (0.20‒0.61 nM g-1 f.wt. in red; 0.18‒0.51 nM g-1 f.wt. in green) compared to their control counterparts. The activity of antioxidant enzymes, i.e., superoxide dismutases (3.83‒8.10 EU mg-1 protein in red; 4.19‒7.35 EU mg-1 protein in green), catalases (1.81‒7.44 EU mg-1 protein in red; 1.04‒6.24 EU mg-1 protein in green), and guaiacol peroxidases (14.37‒47.85 EU mg-1 protein in red; 12.30‒42.79 EU mg-1 protein in green), increased significantly compared to their control counterparts. The number of polyphenols in unexposed and EMF-r exposed samples of red cabbage was significantly different. The study concludes that exposure to 2850 MHz EMF-r affects the early development of cabbage seedlings, modifies their photosynthetic pigments, alters polyphenol content, and impairs their oxidative metabolism.
Collapse
Affiliation(s)
- Amrit Pal Handa
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Alain Vian
- IRHS, Université d'Angers, Agrocampus-Ouest, INRA, SFR 4207 QuaSaV, 49071, 13, Beaucouzé, France
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Ravinder Kumar Kohli
- Amity University, Sector 82A, IT City, International Airport Road, Mohali, 140 306, India
| | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, 160 014, India.
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
4
|
Godínez-Mendoza PL, Rico-Chávez AK, Ferrusquía-Jimenez NI, Carbajal-Valenzuela IA, Villagómez-Aranda AL, Torres-Pacheco I, Guevara-González RG. Plant hormesis: Revising of the concepts of biostimulation, elicitation and their application in a sustainable agricultural production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164883. [PMID: 37348730 DOI: 10.1016/j.scitotenv.2023.164883] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Current research in basic and applied knowledge of plant science has aimed to unravel the role of the interaction between environmental factors and the genome in the physiology of plants to confer the ability to overcome challenges in a climate change scenario. Evidence shows that factors causing environmental stress (stressors), whether of biological, chemical, or physical origin, induce eustressing or distressing effects in plants depending on the dose. The latter suggests the induction of the "hormesis" phenomenon. Sustainable crop production requires a better understanding of hormesis, its basic concepts, and the input variables to make its management feasible. This implies that acknowledging hormesis in plant research could allow specifying beneficial effects to effectively manage environmental stressors according to cultivation goals. Several factors have been useful in this regard, which at low doses show beneficial eustressing effects (biostimulant/elicitor), while at higher doses, they show distressing toxic effects. These insights highlight biostimulants/elicitors as tools to be included in integrated crop management strategies for reaching sustainability in plant science and agricultural studies. In addition, compelling evidence on the inheritance of elicited traits in plants unfolds the possibility of implementing stressors as a tool in plant breeding.
Collapse
Affiliation(s)
- Pablo L Godínez-Mendoza
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Amanda K Rico-Chávez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Noelia I Ferrusquía-Jimenez
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Ireri A Carbajal-Valenzuela
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Ana L Villagómez-Aranda
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico
| | - Irineo Torres-Pacheco
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico.
| | - Ramon G Guevara-González
- Center of Applied Research in Biosystems (CARB-CIAB), School of Engineering, Autonomous University of Querétaro-Campus Amazcala, Carr. Amazcala-Chichimequillas Km 1.0, C.P 76265 El Marqués, Querétaro, Mexico.
| |
Collapse
|
5
|
Peña-Morán OA, Jiménez-Pérez J, Cerón-Romero L, Rodríguez-Aguilar M. In Silico Conformation of the Drug Colchicine into Tubulin Models and Acute Phytotoxic Activity on Cucumis sativus Radicles. PLANTS (BASEL, SWITZERLAND) 2022; 11:1805. [PMID: 35890440 PMCID: PMC9323635 DOI: 10.3390/plants11141805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
Many tests are used to determine the toxic activity of miscellaneous substances, and those that are simple, fast, and inexpensive are useful for screening compounds with applications in different fields. The Cucumis sativus root growth inhibition test is an example of acute toxicity determinations. On the other hand, colchicine has been used as a herbicide to generate polyploids in plant species finally reaching the environment; for this reason, colchicine could become a point of attention in ecotoxicology. This work established that Cucumis sativus, at the colchicine binding site (CBS) in tubulin, shares 100% similarity with humans. Colchicine was docked on seven Cucumis sativus computational models of the αβ-tubulin heterodimer, allowing us to understand a possible conformation in tubulin to trigger its antimitotic effect. Furthermore, an in vitro phytotoxicity assay of colchicine-treated cucumber radicles indicated a hormetic-type concentration-dependent response with macroscopic changes in radicles and hypocotyl. These results support the highly preserved grade of tubulins in several species, and using microtubule inhibitors could require attention in ecotoxicological issues. The Cucumis sativus root growth test could help evaluate small molecules (colchicine analogs), chiefly by CBS interactions, a known druggable site, still a target in the search for antimitotic compounds.
Collapse
Affiliation(s)
- Omar Aristeo Peña-Morán
- División de Ciencias de la Salud, Universidad Autónoma del Estado de Quintana Roo, Chetumal 77039, Quintana Roo, Mexico;
| | - Jesús Jiménez-Pérez
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán 86690, Tabasco, Mexico; (J.J.-P.); (L.C.-R.)
| | - Litzia Cerón-Romero
- División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán 86690, Tabasco, Mexico; (J.J.-P.); (L.C.-R.)
| | - Maribel Rodríguez-Aguilar
- División de Ciencias de la Salud, Universidad Autónoma del Estado de Quintana Roo, Chetumal 77039, Quintana Roo, Mexico;
| |
Collapse
|
6
|
|
7
|
Darré M, Vicente AR, Cisneros-Zevallos L, Artés-Hernández F. Postharvest Ultraviolet Radiation in Fruit and Vegetables: Applications and Factors Modulating Its Efficacy on Bioactive Compounds and Microbial Growth. Foods 2022; 11:653. [PMID: 35267286 PMCID: PMC8909097 DOI: 10.3390/foods11050653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
Ultraviolet (UV) radiation has been considered a deleterious agent that living organisms must avoid. However, many of the acclimation changes elicited by UV induce a wide range of positive effects in plant physiology through the elicitation of secondary antioxidant metabolites and natural defenses. Therefore, this fact has changed the original UV conception as a germicide and potentially damaging agent, leading to the concept that it is worthy of application in harvested commodities to take advantage of its beneficial responses. Four decades have already passed since postharvest UV radiation applications began to be studied. During this time, UV treatments have been successfully evaluated for different purposes, including the selection of raw materials, the control of postharvest diseases and human pathogens, the elicitation of nutraceutical compounds, the modulation of ripening and senescence, and the induction of cross-stress tolerance. Besides the microbicide use of UV radiation, the effect that has received most attention is the elicitation of bioactive compounds as a defense mechanism. UV treatments have been shown to induce the accumulation of phytochemicals, including ascorbic acid, carotenoids, glucosinolates, and, more frequently, phenolic compounds. The nature and extent of this elicitation have been reported to depend on several factors, including the product type, maturity, cultivar, UV spectral region, dose, intensity, and radiation exposure pattern. Even though in recent years we have greatly increased our understanding of UV technology, some major issues still need to be addressed. These include defining the operational conditions to maximize UV radiation efficacy, reducing treatment times, and ensuring even radiation exposure, especially under realistic processing conditions. This will make UV treatments move beyond their status as an emerging technology and boost their adoption by industry.
Collapse
Affiliation(s)
- Magalí Darré
- LIPA—Laboratorio de Investigación en Productos Agroindustriales, Universidad Nacional de La Plata, Calle 60 y 119 s/n, La Plata CP 1900, Argentina;
| | - Ariel Roberto Vicente
- LIPA—Laboratorio de Investigación en Productos Agroindustriales, Universidad Nacional de La Plata, Calle 60 y 119 s/n, La Plata CP 1900, Argentina;
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Francisco Artés-Hernández
- Postharvest and Refrigeration Group, Department of Agronomical Engineering & Institute of Plant Biotechnology, Universidad Politécnica de Cartagena, 30203 Murcia, Spain;
| |
Collapse
|
8
|
Artés-Hernández F, Castillejo N, Martínez-Zamora L. UV and Visible Spectrum LED Lighting as Abiotic Elicitors of Bioactive Compounds in Sprouts, Microgreens and Baby Leaves. A Comprehensive Review Including Their Mode of Action. Foods 2022; 11:foods11030265. [PMID: 35159417 PMCID: PMC8834035 DOI: 10.3390/foods11030265] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
According to social demands, the agri-food industry must elaborate convenient safe and healthy foods rich in phytochemicals while minimising processing inputs like energy consumption. Young plants in their first stages of development represent great potential. Objective: This review summarises the latest scientific findings concerning the use of UV and visible spectrum LED lighting as green, sustainable, and low-cost technologies to improve the quality of sprouts, microgreens, and baby leaves to enhance their health-promoting compounds, focusing on their mode of action while reducing costs and energy. Results: These technologies applied during growing and/or after harvesting were able to improve physiological and morphological development of sprouted seeds while increasing their bioactive compound content without compromising safety and other quality attributes. The novelty is to summarise the main findings published in a comprehensive review, including the mode of action, and remarking on the possibility of its postharvest application where the literature is still scarce. Conclusions: Illumination with UV and/or different regions of the visible spectrum during growing and shelf life are good abiotic elicitors of the production of phytochemicals in young plants, mainly through the activation of specific photoreceptors and ROS production. However, we still need to understand the mechanistic responses and their dependence on the illumination conditions.
Collapse
|