1
|
Di X, Wang Q, Zhang F, Feng H, Wang X, Cai C. Advances in the Modulation of Potato Tuber Dormancy and Sprouting. Int J Mol Sci 2024; 25:5078. [PMID: 38791120 PMCID: PMC11121589 DOI: 10.3390/ijms25105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The post-harvest phase of potato tuber dormancy and sprouting are essential in determining the economic value. The intricate transition from dormancy to active growth is influenced by multiple factors, including environmental factors, carbohydrate metabolism, and hormonal regulation. Well-established environmental factors such as temperature, humidity, and light play pivotal roles in these processes. However, recent research has expanded our understanding to encompass other novel influences such as magnetic fields, cold plasma treatment, and UV-C irradiation. Hormones like abscisic acid (ABA), gibberellic acid (GA), cytokinins (CK), auxin, and ethylene (ETH) act as crucial messengers, while brassinosteroids (BRs) have emerged as key modulators of potato tuber sprouting. In addition, jasmonates (JAs), strigolactones (SLs), and salicylic acid (SA) also regulate potato dormancy and sprouting. This review article delves into the intricate study of potato dormancy and sprouting, emphasizing the impact of environmental conditions, carbohydrate metabolism, and hormonal regulation. It explores how various environmental factors affect dormancy and sprouting processes. Additionally, it highlights the role of carbohydrates in potato tuber sprouting and the intricate hormonal interplay, particularly the role of BRs. This review underscores the complexity of these interactions and their importance in optimizing potato dormancy and sprouting for agricultural practices.
Collapse
Affiliation(s)
- Xueni Di
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Feng Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Haojie Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiyao Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengcheng Cai
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Guzmán-Guzmán P, Valencia-Cantero E, Santoyo G. Plant growth-promoting bacteria potentiate antifungal and plant-beneficial responses of Trichoderma atroviride by upregulating its effector functions. PLoS One 2024; 19:e0301139. [PMID: 38517906 PMCID: PMC10959389 DOI: 10.1371/journal.pone.0301139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024] Open
Abstract
Trichoderma uses different molecules to establish communication during its interactions with other organisms, such as effector proteins. Effectors modulate plant physiology to colonize plant roots or improve Trichoderma's mycoparasitic capacity. In the soil, these fungi can establish relationships with plant growth-promoting bacteria (PGPBs), thus affecting their overall benefits on the plant or its fungal prey, and possibly, the role of effector proteins. The aim of this study was to determine the induction of Trichoderma atroviride gene expression coding for effector proteins during the interaction with different PGPBs, Arabidopsis or the phytopathogen Fusarium brachygibbosum, and to determine whether PGPBs potentiates the beneficial effects of T. atroviride. During the interaction with F. brachygibbosum and PGPBs, the effector coding genes epl1, tatrx2 and tacfem1 increased their expression, especially during the consortia with the bacteria. During the interaction of T. atroviride with the plant and PGPBs, the expression of epl1 and tatrx2 increased, mainly with the consortium formed with Pseudomonas fluorescens UM270, Bacillus velezensis AF12, or B. halotolerans AF23. Additionally, the consortium formed by T. atroviride and R. badensis SER3 stimulated A. thaliana PR1:GUS and LOX2:GUS for SA- and JA-mediated defence responses. Finally, the consortium of T. atroviride with SER3 was better at inhibiting pathogen growth, but the consortium of T. atroviride with UM270 was better at promoting Arabidopsis growth. These results showed that the biocontrol capacity and plant growth-promoting traits of Trichoderma spp. can be potentiated by PGPBs by stimulating its effector functions.
Collapse
Affiliation(s)
- Paulina Guzmán-Guzmán
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Eduardo Valencia-Cantero
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Gustavo Santoyo
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| |
Collapse
|
3
|
Zhang J, Huang X, Yang S, Huang A, Ren J, Luo X, Feng S, Li P, Li Z, Dong P. Endophytic Bacillus subtilis H17-16 effectively inhibits Phytophthora infestans, the pathogen of potato late blight, and its potential application. PEST MANAGEMENT SCIENCE 2023; 79:5073-5086. [PMID: 37572366 DOI: 10.1002/ps.7717] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND As a highly prevalent epidemic disease of potato, late blight caused by Phytophthora infestans poses a serious threat to potato yield and quality. At present, chemical fungicides are mainly used to control potato late blight, but long-term overuse of chemical fungicides may lead to environmental pollution and human health threats. Endophytes, natural resources for plant diseases control, can promote plant growth, enhance plant resistance, and secrete antifungal substances. Therefore, there is an urgent need to find some beneficial endophytes to control potato late blight. RESULTS We isolated a strain of Bacillus subtilis H17-16 from potato healthy roots. It can significantly inhibit mycelial growth, sporangia germination and the pathogenicity of Phytophthora infestans, induce the resistance of potato to late blight, and promote potato growth. In addition, H17-16 has the ability to produce protease, volatile compounds (VOCs) and form biofilms. After H17-16 treatment, most of the genes involved in metabolism, virulence and drug resistance of Phytophthora infestans were down-regulated significantly, and the genes related to ribosome biogenesis were mainly up-regulated. Moreover, field and postharvest application of H17-16 can effectively reduce the occurrence of potato late blight, and the combination of H17-16 with chitosan or chemical fungicides had a better effect than single H17-16. CONCLUSION Our results reveal that Bacillus subtilis H17-16 has great potential as a natural fungicide for controlling potato late blight, laying a theoretical basis for its development as a biological control agent. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaomei Zhang
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| | - Xiaoqing Huang
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| | - Shidong Yang
- Shandong Nongdeli Biotechnology Co., Ltd, Jinan, China
| | - Airong Huang
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| | - Jie Ren
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| | - Xunguang Luo
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| | - Shun Feng
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| | - Peihua Li
- College of Agronomy, Xichang University, Xichang, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, China
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, Chongqing, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, China
| |
Collapse
|
4
|
Charfeddine M, Chiab N, Charfeddine S, Ferjani A, Gargouri-Bouzid R. Heat, drought, and combined stress effect on transgenic potato plants overexpressing the StERF94 transcription factor. JOURNAL OF PLANT RESEARCH 2023; 136:549-562. [PMID: 36988761 DOI: 10.1007/s10265-023-01454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/17/2023] [Indexed: 06/09/2023]
Abstract
Despite their economic importance worldwide, potato plants are sensitive to various abiotic constraints, such as drought and high temperatures, which cause significant losses in yields and tuber quality. Moreover, because of the climate change phenomenon, plants are frequently subjected to combined stresses, mainly high temperatures and drought. In this context, breeding for tolerant varieties should consider not only plant response to drought or high temperature but also to combined stresses. In the current study, we studied transgenic potato plants overexpressing an ethylene response transcription factor (TF; StERF94) involved in abiotic stress response signaling pathways. Our previous results showed that these transgenic plants display tolerance to salt stress more than wildtype (WT). In this work, we aimed to investigate the effects of drought, heat, and combined stresses on transgenic potato plants overexpressing StERF94 TF under in vitro culture conditions. The obtained results revealed that StERF94 overexpression improved the tolerance of the transgenic plants to drought, heat, and combined stresses through better control of the leaf water and chlorophyll contents, activation of antioxidant enzymes, and an accumulation of proline, especially in the leaves. Indeed, the expression level of antioxidant enzyme-encoding genes (CuZnSOD, FeSOD, CAT1, and CAT2) was significantly induced by the different stress conditions in the transgenic potato plants compared with the WT plants. This study further confirms that StERF94 TF may be implicated in regulating the expression of target genes encoding antioxidant enzymes.
Collapse
Affiliation(s)
- Mariam Charfeddine
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| | - Nour Chiab
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia.
| | - Safa Charfeddine
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| | - Aziza Ferjani
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| | - Radhia Gargouri-Bouzid
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| |
Collapse
|
5
|
Vimal SR, Singh JS, Prasad SM. Prospective of Indole-3-Acteic Acid (IAA) and Endophytic Microbe Bacillus subtilis Strain SSA4 in Paddy Seedlings Development and Ascorbate-Glutathione (AsA-GSH) Cycle Regulation to Mitigate NaCl Toxicity. Mol Biotechnol 2023:10.1007/s12033-023-00743-w. [PMID: 37087717 DOI: 10.1007/s12033-023-00743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/02/2023] [Indexed: 04/24/2023]
Abstract
Plant growth promoting endophytes significantly affected plant health. The present study demonstrates effect of endophytic isolate Bacillus subtilis strain SSA4 and exogenous Indole-3-acetic acid (IAA) on paddy seedlings growth parameters, photosynthetic pigments, photosynthesis, leaf gas exchange parameters, respiration, oxidative stress biomarkers and Ascorbate-Glutathione (AsA-GSH) cycle under different NaCl (0-300 mM) stresses. The Bacillus subtilis SSA4 was identified by 16S r-RNA gene sequence analyses and NCBI BLASTn tools. The B. subtilis SSA4 tolerated 1100 mM NaCl and produced IAA (42.15 µg m/L) at 300 mM NaCl stress. The paddy genotype (HUR 917) treated with exogenous IAA (21 µg m/L) and B. subtilis strain SSA4 egg cell based bioformulation was significantly affected seedlings physiology and biochemistry at lower (150 mM) and higher (300 mM) NaCl doses. In conclusion, co-inoculation found as effective green tool to mitigating salinity stress in paddy seedlings.
Collapse
Affiliation(s)
- Shobhit Raj Vimal
- Ranjan Plant Physiology & Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 221102, India
| | - Jay Shankar Singh
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology & Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, 221102, India.
| |
Collapse
|
6
|
Lastochkina O, Aliniaeifard S, SeifiKalhor M, Bosacchi M, Maslennikova D, Lubyanova A. Novel Approaches for Sustainable Horticultural Crop Production: Advances and Prospects. HORTICULTURAE 2022; 8:910. [DOI: 10.3390/horticulturae8100910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Reduction of plant growth, yield and quality due to diverse environmental constrains along with climate change significantly limit the sustainable production of horticultural crops. In this review, we highlight the prospective impacts that are positive challenges for the application of beneficial microbial endophytes, nanomaterials (NMs), exogenous phytohormones strigolactones (SLs) and new breeding techniques (CRISPR), as well as controlled environment horticulture (CEH) using artificial light in sustainable production of horticultural crops. The benefits of such applications are often evaluated by measuring their impact on the metabolic, morphological and biochemical parameters of a variety of cultures, which typically results in higher yields with efficient use of resources when applied in greenhouse or field conditions. Endophytic microbes that promote plant growth play a key role in the adapting of plants to habitat, thereby improving their yield and prolonging their protection from biotic and abiotic stresses. Focusing on quality control, we considered the effects of the applications of microbial endophytes, a novel class of phytohormones SLs, as well as NMs and CEH using artificial light on horticultural commodities. In addition, the genomic editing of plants using CRISPR, including its role in modulating gene expression/transcription factors in improving crop production and tolerance, was also reviewed.
Collapse
|