1
|
Removal of Volatile Organic Compounds (VOCs) from Air: Focus on Biotrickling Filtration and Process Modeling. Processes (Basel) 2022. [DOI: 10.3390/pr10122531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Biotrickling filtration is a well-established technology for the treatment of air polluted with odorous and volatile organic compounds (VOCs). Besides dozens of successful industrial applications of this technology, there are still gaps in a full understanding and description of the mechanisms of biotrickling filtration. This review focuses on recent research results on biotrickling filtration of air polluted with single and multiple VOCs, as well as process modeling. The modeling offers optimization of a process design and performance, as well as allows deeper understanding of process mechanisms. An overview of the developments of models describing biotrickling filtration and conventional biofiltration, as primarily developed and in many aspects through similar processes, is presented in this paper.
Collapse
|
2
|
Modelling of Biotrickling Filters for Treatment of NOx Analytical Expressions for the NOx Concentration in Both Gas and Biofilm Phases. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A mathematical model of an ideal biotrickling filter (BF) system that inoculates a recently identified strain of Chelatococcus daeguensis TAD1 and brings about efficient nitrogen oxide treatment is discussed. The proposed model is based on nonlinear mass transport equations at the gas–biofilm interface. Using Akbari–Ganji’s technique, approximate analytical expressions for the nitric oxide concentration in the gaseous and biofilm phases were developed for all feasible system parameters. In addition, to investigate the dynamic behaviour of the system, a numerical analysis of the problem is provided using MATLAB tools. To demonstrate this new approach, graphical data are provided and quantitatively discussed. This theoretical result has good agreement with the numerical simulation (MATLAB) results for the experimental values of parameters.
Collapse
|
3
|
Effects of Water Content and Irrigation of Packing Materials on the Performance of Biofilters and Biotrickling Filters: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10071304] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Biofilters (BFs) and biotrickling filters (BTFs) are two types of bioreactors used for treatment of volatile organic compounds (VOCs). Both BFs and BTFs use packing materials in which various microorganisms are immobilised. The water phase in BFs is stationary and used to maintain the humidity of packing materials, while BTFs have a mobile liquid phase. Optimisation of irrigation of packing materials is crucial for effective performance of BFs and BTFs. A literature review is presented on the influence of water content of packing materials on the biofiltration efficiency of various pollutants. Different configurations of BFs and BTFs and their influence on moisture distribution in packing materials were discussed. The review also presents various packing materials and their irrigation control strategies applied in recent biofiltration studies. The sources of this review included recent research articles from scientific journals and several review articles discussing BFs and BTFs.
Collapse
|
4
|
Khalifa AA, Khan E, Akhtar MS. Phytoremediation of indoor formaldehyde by plants and plant material. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:493-504. [PMID: 35771032 DOI: 10.1080/15226514.2022.2090499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Formaldehyde evolves from various household items and is of environmental and public health concern. Removal of this contaminant from the indoor air is of utmost importance and currently, various practices are in the field. Among these practices, indoor plants are of particular importance because they help in controlling indoor temperature, moisture, and oxygen concentration. Plants and plant materials studied for the purpose have been reviewed hereunder. The main topics of the review are, mechanism of phytoremediation, plants and their benefits, plant material in formaldehyde remediation, and airtight environmental and health issues. Future research in the field is also highlighted which will help new researches to plan for the remediation of formaldehyde in indoor air. The remediation capacity of several plants has been tabulated and compared, which gives easy access to assess various plants for remediation of the target pollutant. Challenges and issues in the phytoremediation of formaldehyde are also discussed.Novelty statement: Phytoremediation is a well-known technique to mitigate various organic and inorganic pollutants. The technique has been used by various researchers for maintaining indoor air quality but its efficiency under real-world conditions and human activities is still a question and is vastly affected relative to laboratory conditions. Several modifications in the field are in progress, here in this review article we have summarized and highlighted new directions in the field which could be a better solution to the problem in the future.
Collapse
Affiliation(s)
- Abeer Ahmed Khalifa
- Environment and Sustainable Development Program, College of Science, University of Bahrain, Sakhir, Bahrain
- Department of Architecture and Interior Design, College of Engineering, University of Bahrain, Isa Town, Bahrain
| | - Ezzat Khan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir, Bahrain
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| | | |
Collapse
|
5
|
Bu H, Carvalho G, Huang C, Sharma KR, Yuan Z, Song Y, Bond P, Keller J, Yu M, Jiang G. Evaluation of continuous and intermittent trickling strategies for the removal of hydrogen sulfide in a biotrickling filter. CHEMOSPHERE 2022; 291:132723. [PMID: 34736744 DOI: 10.1016/j.chemosphere.2021.132723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Biotrickling filter (BTF) is a widely applied bioreactor for odour abatement in sewer networks. The trickling strategy is vital for maintaining a sound operation of BTF. This study employed a lab-scale BTF packed with granular activated carbon at a short empty bed residence time of 6 s and pH 1-2 to evaluate different trickling strategies, i.e., continuous trickling (different velocities) and intermittent trickling (different trickling intervals), in terms of the removal of hydrogen sulfide (H2S), bed pressure drop, H2S oxidation products and microbial community. The H2S removal performance decreased with the trickling velocity (∼3.6 m/h) in BTF. In addition, three intermittent trickling strategies, i.e., 10-min trickling per 24 h, 8 h, and 2 h, were investigated. The H2S elimination capacity deteriorated after about 2 weeks under both 10-min trickling per 24 h and 8 h. For both intermittent (10-min trickling per 2 h) and continuous trickling, the BTF exhibited nearly 100 % H2S removal for inlet H2S concentrations<100 ppmv, but intermittent BTF showed better removal performance than continuous trickling when inlet H2S increased to 120-190 ppmv. Furthermore, the bed pressure drops were 333 and 3888 Pa/m for non-trickling and trickling periods, respectively, which makes intermittent BTF save 83 % energy consumption of the blower compared with continuous tirckling. However, intermittent BTF exhibited transient H2S breakthrough (<1 ppmv) during trickling periods. Moreover, elemental sulfur and sulfate were major products of H2S oxidation and Acidithiobacillus was the dominant genus in both intermittent and continuous trickling BTF. A mathematical model was calibrated for the intermittent BTF and a sensitivity analysis was performed on the model. It shows mass transfer parameters determine the H2S removal. Overall, intermittent trickling strategy is promising for improving odour abatement performance and reducing the operating cost of the BTF.
Collapse
Affiliation(s)
- Hao Bu
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Gilda Carvalho
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia.
| | - Casey Huang
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Keshab R Sharma
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Yarong Song
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Philip Bond
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Jurg Keller
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia
| | - Miao Yu
- Science and Engineering Faculty, Queensland University of Technology, QLD, Australia
| | - Guangming Jiang
- Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, QLD, Australia; School of Civil, Mining & Environmental Engineering, University of Wollongong, NSW, Australia.
| |
Collapse
|
6
|
Masi M, Nissim WG, Pandolfi C, Azzarello E, Mancuso S. Modelling botanical biofiltration of indoor air streams contaminated by volatile organic compounds. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126875. [PMID: 34411961 DOI: 10.1016/j.jhazmat.2021.126875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/20/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Botanical filtration is a biological-based treatment method suitable for removing hazardous volatile organic compounds (VOCs) from air streams, based on forcing an air flow through a porous substrate and foliage of a living botanical compartment. The pathways and removal mechanisms during VOC bioremediation have been largely investigated; however, their mathematical representation is well established only for the non-botanical components of the system. In this study, we evaluated the applicability of such a modelling scheme to systems which include a botanical compartment. We implemented a one-dimensional numerical model and performed a global sensitivity analysis to measure the input parameters influence on the transient and steady biofilter responses. We found that the most sensitive parameters on the transient-state behaviour were the mass transfer coefficient between gas and solid surfaces, and the fraction of solid surfaces covered by the biofilm; the steady-state response was primarily influenced by the biofilm specific surface area and the fraction of surfaces covered by the biofilm. We calibrated the identified set of parameters and successfully validated the model against data from a pilot-scale installation. The results showed that the application of the model to systems with a botanical compartment is feasible, although under a strict set of assumptions.
Collapse
Affiliation(s)
- Matteo Masi
- PNAT SRL, Via della Cernaia 12, 50129 Firenze, Italy.
| | - Werther Guidi Nissim
- PNAT SRL, Via della Cernaia 12, 50129 Firenze, Italy; Department of Agriculture, Food, Environment and Forestry, University of Florence, Italy
| | - Camilla Pandolfi
- PNAT SRL, Via della Cernaia 12, 50129 Firenze, Italy; Department of Agriculture, Food, Environment and Forestry, University of Florence, Italy
| | - Elisa Azzarello
- PNAT SRL, Via della Cernaia 12, 50129 Firenze, Italy; Department of Agriculture, Food, Environment and Forestry, University of Florence, Italy
| | - Stefano Mancuso
- PNAT SRL, Via della Cernaia 12, 50129 Firenze, Italy; Department of Agriculture, Food, Environment and Forestry, University of Florence, Italy
| |
Collapse
|
7
|
Bu H, Carvalho G, Yuan Z, Bond P, Jiang G. Biotrickling filter for the removal of volatile sulfur compounds from sewers: A review. CHEMOSPHERE 2021; 277:130333. [PMID: 33780683 DOI: 10.1016/j.chemosphere.2021.130333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Volatile sulfur compounds (VSCs) were identified as the dominant priority odorants emitted from sewers, including hydrogen sulfide (H2S), methyl mercaptan (MM), dimethyl disulfide (DMDS) and dimethyl sulfide (DMS). Biotrickling filter (BTF) is a widely-applied technology for odour abatement in sewers because of its relatively low operating cost and efficient H2S removal. The authors review the mechanisms and performance of BTF for the removal of these four VSCs, and discuss the key influencing factors including of empty bed residence time (EBRT), pH, temperature, nutrients, water content, trickling operation and packing materials. Besides, measures to improve the VSCs removal in BTF are proposed in the context of key influencing factors. Finally, the review assesses the new challenges of BTF for sewer emissions treatment, namely with respect to the performance of BTF for greenhouse gases (GHG) treatment.
Collapse
Affiliation(s)
- Hao Bu
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Gilda Carvalho
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, QLD, Australia
| | - Philip Bond
- School of Biomedical Sciences, Queensland University of Technology, QLD, Australia
| | - Guangming Jiang
- School of Civil, Mining & Environmental Engineering, University of Wollongong, NSW, Australia.
| |
Collapse
|
8
|
Gąszczak A, Bartelmus G, Rotkegel A. Modeling of the volatile organic compounds biodegradation process in the trickle‐bed bioreactor—Analysis of the model parametric sensitivity. AIChE J 2021. [DOI: 10.1002/aic.17180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Agnieszka Gąszczak
- Institute of Chemical Engineering Polish Academy of Sciences Gliwice Poland
| | - Grażyna Bartelmus
- Institute of Chemical Engineering Polish Academy of Sciences Gliwice Poland
| | - Adam Rotkegel
- Institute of Chemical Engineering Polish Academy of Sciences Gliwice Poland
| |
Collapse
|
9
|
San-Valero P, Gabaldón C, Álvarez-Hornos FJ, Izquierdo M, Martínez-Soria V. Removal of acetone from air emissions by biotrickling filters: providing solutions from laboratory to full-scale. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 54:1-8. [PMID: 30193082 DOI: 10.1080/10934529.2018.1496552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
A full-scale biotrickling filter (BTF) treating acetone air emissions of wood-coating activities showed difficulties to achieve outlet concentrations lower than 125 mg C m-3, especially for high inlet concentrations and oscillating emissions. To solve this problem, a laboratory investigation on acetone removal was carried out simulating typical industrial conditions: discontinuous and variable inlet concentrations and intermittent spraying. The results were evaluated in terms of removal efficiency and outlet gas emission pattern. Industrial emissions and operational protocols were simulated: inlet load up to 70 g C m-3 h-1 during 2 cycles of 4 h per day and intermittent trickling of 15 min per hour. The outlet gas stream of the pollutant was affected by intermittent spraying, causing a fugitive emission of pollutant. Complete removal efficiency was obtained during non-spraying. Average removal efficiencies higher than 85% were obtained, showing the feasibility of BTF to treat acetone. The outlet gas stream showed a clear dependence on the pH of the trickling liquid, decreasing the removal at pH < 5.5. Thus, a proper control of alkalinity, with regular NaHCO3 addition, was required for successful operation. The laboratory findings were fruitfully transferred to the industry, and the removal of acetone by full-scale BTF was improved.
Collapse
Affiliation(s)
- Pau San-Valero
- a Research Group GI2AM, Department of Chemical Engineering , Universitat de València , Burjassot , Spain
| | - Carmen Gabaldón
- a Research Group GI2AM, Department of Chemical Engineering , Universitat de València , Burjassot , Spain
| | | | - Marta Izquierdo
- a Research Group GI2AM, Department of Chemical Engineering , Universitat de València , Burjassot , Spain
| | - Vicente Martínez-Soria
- a Research Group GI2AM, Department of Chemical Engineering , Universitat de València , Burjassot , Spain
| |
Collapse
|
10
|
San-Valero P, Dorado AD, Quijano G, Álvarez-Hornos FJ, Gabaldón C. Biotrickling filter modeling for styrene abatement. Part 2: Simulating a two-phase partitioning bioreactor. CHEMOSPHERE 2018; 191:1075-1082. [PMID: 29096881 DOI: 10.1016/j.chemosphere.2017.10.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/11/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
A dynamic model describing styrene abatement was developed for a two-phase partitioning bioreactor operated as a biotrickling filter (TPPB-BTF). The model was built as a coupled set of two different systems of partial differential equations depending on whether an irrigation or a non-irrigation period was simulated. The maximum growth rate was previously calibrated from a conventional BTF treating styrene (Part 1). The model was extended to simulate the TPPB-BTF based on the hypothesis that the main change associated with the non-aqueous phase is the modification of the pollutant properties in the liquid phase. The three phases considered were gas, a water-silicone liquid mixture, and biofilm. The selected calibration parameters were related to the physical properties of styrene: Henry's law constant, diffusivity, and the gas-liquid mass transfer coefficient. A sensitivity analysis revealed that Henry's law constant was the most sensitive parameter. The model was successfully calibrated with a goodness of fit of 0.94. It satisfactorily simulated the performance of the TPPB-BTF at styrene loads ranging from 13 to 77 g C m-3 h-1 and empty bed residence times of 30-15 s with the mass transfer enhanced by a factor of 1.6. The model was validated with data obtained in a TPPB-BTF removing styrene continuously. The experimental outlet emissions associated to oscillating inlet concentrations were satisfactorily predicted by using the calibrated parameters. Model simulations demonstrated the potential improvement of the mass-transfer performance of a conventional BTF degrading styrene by adding silicone oil.
Collapse
Affiliation(s)
- Pau San-Valero
- Research Group GI(2)AM, Department of Chemical Engineering, Universitat de València, Av. de La Universitat S/n, 46100, Burjassot, Spain
| | - Antonio D Dorado
- Department of Mining Engineering and Natural Resources, Universitat Politècnica de Catalunya, Bases de Manresa 61-73, 08240, Manresa, Spain
| | - Guillermo Quijano
- CONACYT - Laboratory for Research on Advanced Processes for Wastewater Treatment, Engineering Institute, Juriquilla Academic Unit, National Autonomous University of México (UNAM), Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| | - F Javier Álvarez-Hornos
- Research Group GI(2)AM, Department of Chemical Engineering, Universitat de València, Av. de La Universitat S/n, 46100, Burjassot, Spain
| | - Carmen Gabaldón
- Research Group GI(2)AM, Department of Chemical Engineering, Universitat de València, Av. de La Universitat S/n, 46100, Burjassot, Spain.
| |
Collapse
|
11
|
San-Valero P, Dorado AD, Martínez-Soria V, Gabaldón C. Biotrickling filter modeling for styrene abatement. Part 1: Model development, calibration and validation on an industrial scale. CHEMOSPHERE 2018; 191:1066-1074. [PMID: 29102028 DOI: 10.1016/j.chemosphere.2017.10.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/21/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
A three-phase dynamic mathematical model based on mass balances describing the main processes in biotrickling filtration: convection, mass transfer, diffusion, and biodegradation was calibrated and validated for the simulation of an industrial styrene-degrading biotrickling filter. The model considered the key features of the industrial operation of biotrickling filters: variable conditions of loading and intermittent irrigation. These features were included in the model switching from the mathematical description of periods with and without irrigation. Model equations were based on the mass balances describing the main processes in biotrickling filtration: convection, mass transfer, diffusion, and biodegradation. The model was calibrated with steady-state data from a laboratory biotrickling filter treating inlet loads at 13-74 g C m-3 h-1 and at empty bed residence time of 30-15 s. The model predicted the dynamic emission in the outlet of the biotrickling filter, simulating the small peaks of concentration occurring during irrigation. The validation of the model was performed using data from a pilot on-site biotrickling filter treating styrene installed in a fiber-reinforced facility. The model predicted the performance of the biotrickling filter working under high-oscillating emissions at an inlet load in a range of 5-23 g C m-3 h-1 and at an empty bed residence time of 31 s for more than 50 days, with a goodness of fit of 0.84.
Collapse
Affiliation(s)
- Pau San-Valero
- Research Group GI(2)AM, Department of Chemical Engineering, Universitat de Valencia, Av. de la Universitat s/n, 46100, Burjassot, Spain
| | - Antonio D Dorado
- Department of Mining Engineering and Natural Resources, Universitat Politècnica de Catalunya, Bases de Manresa 61-73, 08240, Manresa, Spain
| | - Vicente Martínez-Soria
- Research Group GI(2)AM, Department of Chemical Engineering, Universitat de Valencia, Av. de la Universitat s/n, 46100, Burjassot, Spain
| | - Carmen Gabaldón
- Research Group GI(2)AM, Department of Chemical Engineering, Universitat de Valencia, Av. de la Universitat s/n, 46100, Burjassot, Spain.
| |
Collapse
|
12
|
Vaiškūnaitė R, Zagorskis A. Modelling of a biofiltration process of volatile organic compound mixtures in a biofilter. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1232604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Rasa Vaiškūnaitė
- Environment Protection Department, Faculty of Environmental Engineering, Vilnius Gediminas Technical University , Vilnius, Lithuania
| | - Alvydas Zagorskis
- Environment Protection Department, Faculty of Environmental Engineering, Vilnius Gediminas Technical University , Vilnius, Lithuania
| |
Collapse
|