1
|
Klopper KB, Bester E, van Schalkwyk M, Wolfaardt GM. Mixed species biofilms act as planktonic cell factories despite isothiazolinone exposure under continuous-flow conditions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70010. [PMID: 39351641 PMCID: PMC11443163 DOI: 10.1111/1758-2229.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
The primary approach to managing biofouling in industrial water systems involves the large-scale use of biocides. It is well-established that biofilms are 'cell factories' that release planktonic cells even when challenged with antimicrobials. The effect of isothiazolinone on the metabolic activity and biomass of mixed Pseudomonas biofilms was monitored in real-time using the CEMS-BioSpec system. The exposure of biofilms to the minimum inhibitory concentration (1.25 mg L-1) of biocide did not impact planktonic cell production (log 7.5 CFU mL-1), while whole-biofilm metabolic activity and biomass accumulation increased. Only the maximum biocide concentration (80 mg L-1) resulted in a change in planktonic cell yields and temporal inhibition of biofilm activity and biomass, a factor that needs due consideration in view of dilution in industrial settings. Interfacing the real-time measurement of metabolic activity and biomass with dosing systems is especially relevant to optimizing the use of biocides in industrial water systems.
Collapse
Affiliation(s)
- Kyle B. Klopper
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
| | - Elanna Bester
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
| | | | - Gideon M. Wolfaardt
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
- Department of Chemistry and BiologyToronto Metropolitan UniversityTorontoOntarioCanada
| |
Collapse
|
2
|
Karkou E, Teo CJ, Savvakis N, Poinapen J, Arampatzis G. Industrial circular water use practices through the application of a conceptual water efficiency framework in the process industry. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122596. [PMID: 39321677 DOI: 10.1016/j.jenvman.2024.122596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/20/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Increased industrial water demand and resource depletion require the incorporation of sustainable and efficient water and wastewater management solutions in the industrial sector. Conventional and advanced treatment technologies, closed-water loops at different levels from an industrial process to collaborative networks among industries within the same or another sector and digital tools and services facilitate the materialization of circular water use practices. To this end, the scope of this paper is the application of the Conceptual Water Efficiency Framework (CWEF), which has been developed within the AquaSPICE project aspiring to enhance water circularity within industries in a holistic way. Four water-intensive process industries (two chemical industries, one oil refinery plant and one meat production plant) are examined, revealing its adaptability, versatility and flexibility according to the requirements of each use case. It is evident that the synergy of process, circular and digital innovations can promote sustainability, contribute to water conservation in the industry, elaborating a compact approach to be replicated from other industries.
Collapse
Affiliation(s)
- Efthalia Karkou
- School of Production Engineering and Management, Technical University of Crete, Chania, Greece.
| | - Chuan Jiet Teo
- KWR Water Research Institute, Groningenhaven 7, 3430 BB, Nieuwegein, Netherlands; Institute of Environmental Engineering, RWTH Aachen University, Mies-van-der-Rohe-Strasse 1, D-52074, Aachen, Germany
| | - Nikolaos Savvakis
- School of Production Engineering and Management, Technical University of Crete, Chania, Greece
| | - Johann Poinapen
- KWR Water Research Institute, Groningenhaven 7, 3430 BB, Nieuwegein, Netherlands
| | - George Arampatzis
- School of Production Engineering and Management, Technical University of Crete, Chania, Greece
| |
Collapse
|
3
|
Klopper KB, Bester E, van Schalkwyk M, Wolfaardt GM. Highlighting the limitations of static microplate biofilm assays for industrial biocide effectiveness compared to dynamic flow conditions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13214. [PMID: 38015101 PMCID: PMC10866068 DOI: 10.1111/1758-2229.13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
The minimal inhibitory concentration of an antimicrobial required to inhibit the growth of planktonic populations (minimum inhibitory concentration [MIC]) remains the 'gold standard' even though biofilms are acknowledged to be recalcitrant to concentrations that greatly exceed the MIC. As a result, most studies focus on biofilm tolerance to high antimicrobial concentrations, whereas the effect of environmentally relevant sub-MIC on biofilms is neglected. The effect of the MIC and sub-MIC of an isothiazolinone biocide on a microbial community isolated from an industrial cooling system was assessed under static and flow conditions. The differential response of planktonic and sessile populations to these biocide concentrations was discerned by modifying the broth microdilution assay. However, the end-point analysis of biofilms cultivated in static microplates obscured the effect of sub-MIC and MIC on biofilms. A transition from batch to the continuous flow system revealed a more nuanced response of biofilms to these biocide concentrations, where biofilm-derived planktonic cell production was maintained despite an increase in the frequency and extent of biofilm sloughing. A holistic, 'best of both worlds' approach that combines the use of static and continuous flow systems is useful to investigate the potential for the development of persistent biofilms under conditions where exposure to sub-MIC and MIC may occur.
Collapse
Affiliation(s)
- Kyle B. Klopper
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
| | - Elanna Bester
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
| | | | - Gideon M. Wolfaardt
- Department of MicrobiologyStellenbosch UniversityStellenboschSouth Africa
- Department of Chemistry and BiologyToronto Metropolitan UniversityTorontoOntarioCanada
| |
Collapse
|
4
|
Blanford WJ, O'Mullan GD. Evaluation of a novel porous antimicrobial media for industrial and HVAC water biocontrol. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2457-2473. [PMID: 37257103 PMCID: wst_2023_076 DOI: 10.2166/wst.2023.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A novel treatment method, consisting of pea-gravel with a marine coating supplemented with alkyldimethylbenzylammonium chloride (ADBAC or benzalkonium chloride), has been examined for its antimicrobial performance and coating stability in aqueous environments. Initial column studies examining the porous media's ability to reduce bacterial loads in heating, ventilation, and air conditioning (HVAC) water found average reductions of 94% from pre-flush levels (106 colony forming unit (CFU)/mL) when assessed with R2A spread plates and 83% reductions with SimPlates. There was no observed statistical difference between the average of pre- and post-flush waters from four tests of the media without ADBAC. Taxonomic identification, by 16S rRNA gene sequencing, of colonies drawn from pre- and post-ABDAC R2A plates showed similarities with taxa observed in high frequency from prior cultivation-independent surveys of other cooling tower systems. With this proof of concept, two versions of the media were evaluated for potential coating components released during aqueous exposure. Neither released measurable volatile organic compounds (VOC) components, but one did release bisphenol A and ABDAC compounds. Subsequent column tests of the more durable coating were conducted using cultures of interest in industrial water and demonstrated significant reductions in neutralized post-column Enterococcus faecalis samples and near complete loss of Legionella pneumophila in non-neutralized fluids, but lower reductions in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- William James Blanford
- School of Earth and Environmental Science, Queens College, CUNY, 6530 Kissena Boulevard, D202 SB, Flushing, NY 11367, USA E-mail: ;
| | - Gregory D O'Mullan
- School of Earth and Environmental Science, Queens College, CUNY, 6530 Kissena Boulevard, D202 SB, Flushing, NY 11367, USA E-mail: ;
| |
Collapse
|
5
|
Analysis of Silver Nanoparticles for the Treatment and Prevention of Nucleopolyhedrovirus Affecting Bombyx mori. Int J Mol Sci 2022; 23:ijms23116325. [PMID: 35683003 PMCID: PMC9181153 DOI: 10.3390/ijms23116325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) causes major economic losses in sericulture. A number of agents have been employed to treat viral diseases. Silver nanoparticles (AgNPs) have wide applications in biomedical fields due to their unique properties. The anti-BmNPV effect of AgNPs has been evaluated, however, there are insufficient studies concerning its toxicity to other organisms and the environment. We chemically synthesized biocompatible BSA-AgNPs with a diameter range of 2–4 nm and characterized their physical properties. The toxicity of AgNPs towards cells and larvae with different concentrations was examined; the results indicated a biofriendly effect on cells and larvae within specific concentration ranges. The SEM observation of the surface of BmNPV after treatment with AgNPs suggested that AgNPs could destroy the polyhedral structure, and the same result was obtained by Coomassie blue staining. Further assays confirmed the weakened virulence of AgNPs-treated BmNPV toward cells and larvae. AgNPs also could effectively inhibit the replication of BmNPV in infected cells and larvae. In summary, our research provides valuable data for the further development of AgNPs as an antiviral drug for sericulture.
Collapse
|
6
|
De Giglio O, Napoli C, Diella G, Fasano F, Lopuzzo M, Apollonio F, D'Ambrosio M, Campanale C, Triggiano F, Caggiano G, Montagna MT. Integrated approach for legionellosis risk analysis in touristic-recreational facilities. ENVIRONMENTAL RESEARCH 2021; 202:111649. [PMID: 34252427 DOI: 10.1016/j.envres.2021.111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Legionellosis is a severe pneumonia caused by the inhalation of aerosols containing Legionella, Gram-negative bacteria present in the water systems of touristic-recreational facilities. The purpose of this study was to develop a scoring tool to predict the risk of both environmental contamination and Legionnaires' disease cases in such facilities in the Apulia region of southern Italy. We analyzed 47 structural and management parameters/risk factors related to the buildings, water systems, and air conditioning at the facilities. A Poisson regression model was used to compute an overall risk score for each facility with respect to three outcomes: water samples positive for Legionella (risk score range: 7-54), water samples positive for Legionella with an average load exceeding 1000 colony-forming units per liter (CFU/L) (risk score range: 22-179,871), and clinical cases of Legionnaire's disease (risk score range: 6-31). The cut-off values for three outcomes were determined by receiver operating characteristic curves (first outcome, samples positive for Legionella in a touristic-recreational facility: 19; second outcome, samples positive for Legionella in a touristic-recreational facility with an average load exceeding 1000 CFU/L: 2062; third outcome, clinical cases of Legionnaire's disease in a touristic-recreational facility: 22). Above these values, there was a significant probability of observing the outcome. We constructed this predictive model using 70% of a large dataset (18 years of clinical and environmental surveillance) and tested the model on the remaining 30% of the dataset to demonstrate its reliability. Our model enables the assessment of risk for a touristic facility and the creation of a conceptual framework to link the risk analysis with prevention measures.
Collapse
Affiliation(s)
- Osvalda De Giglio
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Christian Napoli
- Department of Medical Surgical Sciences and Translational Medicine, "Sapienza" University of Rome, Via di Grottarossa 1035/1039, 00189, Rome, Italy.
| | - Giusy Diella
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Fabrizio Fasano
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Marco Lopuzzo
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Francesca Apollonio
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Marilena D'Ambrosio
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Carmen Campanale
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Francesco Triggiano
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Giuseppina Caggiano
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Maria Teresa Montagna
- Regional Reference Laboratory of Clinical and Environmental Surveillance of Legionellosis, Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
7
|
Nocker A, Lindfeld E, Wingender J, Schulte S, Dumm M, Bendinger B. Thermal and chemical disinfection of water and biofilms: only a temporary effect in regard to the autochthonous bacteria. JOURNAL OF WATER AND HEALTH 2021; 19:808-822. [PMID: 34665773 DOI: 10.2166/wh.2021.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thermal and chemical disinfection of technical water systems not only aim at minimizing the level of undesired microorganisms, but also at preventing excessive biofouling, clogging and interference with diverse technical processes. Typically, treatment has to be repeated in certain time intervals, as the duration of the effect is limited. The transient effect of disinfection was demonstrated in this study applying different treatments to water and biofilms including heat, chlorination, a combination of hydrogen peroxide and peracetic acid and monochloramine. Despite the diverse treatments, the reduction in live bacteria was followed by regrowth in all cases, underlining the universal validity of this phenomenon. The study shows that autochthonous bacteria can reach the concentrations given prior to treatment. The reason is seen in the nutrient concentration that has not changed and that forms the basis for regrowth. Nutrients are released by disinfection from lysed cells or are still fixed in dead biomass that is subsequently scavenged by necrotrophic growth. Treatment cycles therefore only provide a transient reduction of water microbiology if nutrients are not removed. When aiming at greater sustainability of the effect, biocidal treatment has to be equally concerned about nutrient removal by subsequent cleaning procedures as about killing efficiency.
Collapse
Affiliation(s)
- Andreas Nocker
- Applied Microbiology, IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany E-mail: ;
| | - Elisa Lindfeld
- Applied Microbiology, IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany E-mail: ; ; Department of Chemical Engineering, University of Applied Sciences Münster, Stegerwaldstraße 39, 48565 Steinfurt, Germany
| | - Jost Wingender
- Applied Microbiology, IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany E-mail: ; ; Faculty of Chemistry, Environmental Microbiology and Biotechnology, Aquatic Microbiology, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - Simone Schulte
- Evonik Operations GmbH, Goldschmidtstraße 100, 45127 Essen, Germany
| | - Matthias Dumm
- thyssenkrupp Steel Europe AG, Kaiser-Wilhelm-Straße 100, 47166 Duisburg, Germany
| | - Bernd Bendinger
- Applied Microbiology, IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany E-mail: ;
| |
Collapse
|
8
|
Ângelo A, Barata J. Digital transformation of legionella-safe cooling towers: an ecosystem design approach. JOURNAL OF FACILITIES MANAGEMENT 2021. [DOI: 10.1108/jfm-12-2020-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
Legionnaires’ disease is a major threat to public health. Solutions to deal with this problem are usually siloed and not entirely effective. This paper aims to model the information requirements of legionella-safe cooling towers in the era of Industry 4.0.
Design/methodology/approach
A year-long design science research was conducted in a cooling tower producer for heavy industries. The project started with a bibliometric analysis and literature review of legionella in cooling towers. Goal modeling techniques are then used to identify the requirements for digital transformation.
Findings
The improvement of legionella prevention, detection and outbreak response in digitally enabled cooling tower should involve different stakeholders. Digital twins and blockchain are disruptive technologies that can transform the cooling tower industry.
Originality/value
For theory, this study revises the most recent advances in legionella protection. Legionella-safe systems must be prepared to anticipate, monitor and immediate alert in case of an outbreak. For practice, this paper presents a distributed and digital architecture for cooling tower safety. However, technology is only a part of outbreak management solutions, requiring trustworthy conditions and real-time communication among stakeholders.
Collapse
|
9
|
Hasni I, Jarry A, Quelard B, Carlino A, Eberst JB, Abbe O, Demanèche S. Intracellular Behaviour of Three Legionella pneumophila Strains within Three Amoeba Strains, Including Willaertia magna C2c Maky. Pathogens 2020; 9:pathogens9020105. [PMID: 32041369 PMCID: PMC7168187 DOI: 10.3390/pathogens9020105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Legionella pneumophila is a facultative intracellular pathogen found in aquatic environments as planktonic cells within biofilms and as intracellular parasites of free-living amoebae such as Acanthamoeba castellanii. This pathogen bypasses the elimination mechanism to replicate within amoebae; however, not all amoeba species support the growth of L. pneumophila. Willaertia magna C2c Maky, a non-pathogenic amoeba, was previously demonstrated to possess the ability to eliminate the L. pneumophila strain Paris. Here, we study the intracellular behaviour of three L. pneumophila strains (Paris, Philadelphia, and Lens) within W. magna C2c Maky and compare this strain to A. castellanii and W. magna Z503, which are used as controls. We observe the intracellular growth of strain Lens within W. magna Z503 and A. castellanii at 22 °C and 37 °C. Strain Paris grows within A. castellanii at any temperature, while it only grows at 22 °C within W. magna Z503. Strain Philadelphia proliferates only within A. castellanii at 37 °C. Within W. magna C2c Maky, none of the three legionella strains exhibit intracellular growth. Additionally, the ability of W. magna C2c Maky to decrease the number of internalized L. pneumophila is confirmed. These results support the idea that W. magna C2c Maky possesses unique behaviour in regard to L. pneumophila strains.
Collapse
Affiliation(s)
- Issam Hasni
- Microbes, Evolution, Phylogeny and Infection Department, Institut de Recherche pour le Développement IRD 198, Institut Hospitalo-Universitaire (IHU), Aix-Marseille Université, 13007 Marseille, France;
- R&D Department, Amoéba, 38 Avenue des Frères Montgolfier, 69680 Chassieu, France; (A.J.); (B.Q.); (A.C.); (J.-B.E.); (O.A.)
| | - Antoine Jarry
- R&D Department, Amoéba, 38 Avenue des Frères Montgolfier, 69680 Chassieu, France; (A.J.); (B.Q.); (A.C.); (J.-B.E.); (O.A.)
| | - Benjamin Quelard
- R&D Department, Amoéba, 38 Avenue des Frères Montgolfier, 69680 Chassieu, France; (A.J.); (B.Q.); (A.C.); (J.-B.E.); (O.A.)
| | - Antoine Carlino
- R&D Department, Amoéba, 38 Avenue des Frères Montgolfier, 69680 Chassieu, France; (A.J.); (B.Q.); (A.C.); (J.-B.E.); (O.A.)
| | - Jean-Baptiste Eberst
- R&D Department, Amoéba, 38 Avenue des Frères Montgolfier, 69680 Chassieu, France; (A.J.); (B.Q.); (A.C.); (J.-B.E.); (O.A.)
| | - Olivier Abbe
- R&D Department, Amoéba, 38 Avenue des Frères Montgolfier, 69680 Chassieu, France; (A.J.); (B.Q.); (A.C.); (J.-B.E.); (O.A.)
| | - Sandrine Demanèche
- R&D Department, Amoéba, 38 Avenue des Frères Montgolfier, 69680 Chassieu, France; (A.J.); (B.Q.); (A.C.); (J.-B.E.); (O.A.)
- Correspondence:
| |
Collapse
|
10
|
Sanli NO. Evaluation of biocidal efficacy of Chloramine T trihydrate on planktonic and sessile bacteria in a model cooling tower water system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:526-536. [PMID: 30924807 DOI: 10.2166/wst.2019.076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A model cooling tower system was experimentally seeded with Legionella pneumophila and real industrial cooling tower (CT) water has been run at the closest to full-scale system operating conditions. The water/biofilm samples were taken from the model system monthly, and the effectiveness of the different concentrations of Chloramine T trihydrate biocide was evaluated in terms of its ability to control both planktonic/sessile microbial populations. Although Chloramine T is a recommended commercial formulation for disinfecting CTs, there is a lack of published data on the efficacy of this compound against both planktonic and sessile populations in the cooling tower. Biocide response in both sessile/planktonic bacteria counts varied according to months. Tested biocide concentrations provided the clean tower conditions by reducing the concentration of heterotrophic plate count (HPC) below <104 cfu mL-1, L. pneumophila <10 cfu mL-1 and of adenosine triphosphate (ATP) values <300 relative light units (RLU), after 1, 3 and 24 h of exposure, during a 6-month period. There were no statistically significant differences in efficacy between concentrations in terms of reduction in the number of bacteria, decrease in ATP value and viability. The results revealed that Chloramine T can effectively control biofouling in cooling systems according to the limit values of the successful control program.
Collapse
Affiliation(s)
- Nazmiye Ozlem Sanli
- Section of Fundamental and Industrial Microbiology, Department of Biology, Faculty of Science, Istanbul University, Vezneciler, Fatih, 34134 Istanbul, Turkey E-mail: ;
| |
Collapse
|