1
|
Bolam J, Diaz JA, Andrews M, Coats RO, Philiastides MG, Astill SL, Delis I. A drift diffusion model analysis of age-related impact on multisensory decision-making processes. Sci Rep 2024; 14:14895. [PMID: 38942761 PMCID: PMC11213863 DOI: 10.1038/s41598-024-65549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
Older adults (OAs) are typically slower and/or less accurate in forming perceptual choices relative to younger adults. Despite perceptual deficits, OAs gain from integrating information across senses, yielding multisensory benefits. However, the cognitive processes underlying these seemingly discrepant ageing effects remain unclear. To address this knowledge gap, 212 participants (18-90 years old) performed an online object categorisation paradigm, whereby age-related differences in Reaction Times (RTs) and choice accuracy between audiovisual (AV), visual (V), and auditory (A) conditions could be assessed. Whereas OAs were slower and less accurate across sensory conditions, they exhibited greater RT decreases between AV and V conditions, showing a larger multisensory benefit towards decisional speed. Hierarchical Drift Diffusion Modelling (HDDM) was fitted to participants' behaviour to probe age-related impacts on the latent multisensory decision formation processes. For OAs, HDDM demonstrated slower evidence accumulation rates across sensory conditions coupled with increased response caution for AV trials of higher difficulty. Notably, for trials of lower difficulty we found multisensory benefits in evidence accumulation that increased with age, but not for trials of higher difficulty, in which increased response caution was instead evident. Together, our findings reconcile age-related impacts on multisensory decision-making, indicating greater multisensory evidence accumulation benefits with age underlying enhanced decisional speed.
Collapse
Affiliation(s)
- Joshua Bolam
- School of Biomedical Sciences, University of Leeds, West Yorkshire, LS2 9JT, UK.
- Institute of Neuroscience, Trinity College Dublin, Dublin, D02 PX31, Ireland.
| | - Jessica A Diaz
- School of Biomedical Sciences, University of Leeds, West Yorkshire, LS2 9JT, UK
- School of Social Sciences, Birmingham City University, West Midlands, B15 3HE, UK
| | - Mark Andrews
- School of Social Sciences, Nottingham Trent University, Nottinghamshire, NG1 4FQ, UK
| | - Rachel O Coats
- School of Psychology, University of Leeds, West Yorkshire, LS2 9JT, UK
| | - Marios G Philiastides
- School of Neuroscience and Psychology, University of Glasgow, Lanarkshire, G12 8QB, UK
| | - Sarah L Astill
- School of Biomedical Sciences, University of Leeds, West Yorkshire, LS2 9JT, UK
| | - Ioannis Delis
- School of Biomedical Sciences, University of Leeds, West Yorkshire, LS2 9JT, UK.
| |
Collapse
|
2
|
Wang X, Delgado J, Marchesotti S, Kojovic N, Sperdin HF, Rihs TA, Schaer M, Giraud AL. Speech Reception in Young Children with Autism Is Selectively Indexed by a Neural Oscillation Coupling Anomaly. J Neurosci 2023; 43:6779-6795. [PMID: 37607822 PMCID: PMC10552944 DOI: 10.1523/jneurosci.0112-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 08/24/2023] Open
Abstract
Communication difficulties are one of the core criteria in diagnosing autism spectrum disorder (ASD), and are often characterized by speech reception difficulties, whose biological underpinnings are not yet identified. This deficit could denote atypical neuronal ensemble activity, as reflected by neural oscillations. Atypical cross-frequency oscillation coupling, in particular, could disrupt the joint tracking and prediction of dynamic acoustic stimuli, a dual process that is essential for speech comprehension. Whether such oscillatory anomalies already exist in very young children with ASD, and with what specificity they relate to individual language reception capacity is unknown. We collected neural activity data using electroencephalography (EEG) in 64 very young children with and without ASD (mean age 3; 17 females, 47 males) while they were exposed to naturalistic-continuous speech. EEG power of frequency bands typically associated with phrase-level chunking (δ, 1-3 Hz), phonemic encoding (low-γ, 25-35 Hz), and top-down control (β, 12-20 Hz) were markedly reduced in ASD relative to typically developing (TD) children. Speech neural tracking by δ and θ (4-8 Hz) oscillations was also weaker in ASD compared with TD children. After controlling gaze-pattern differences, we found that the classical θ/γ coupling was replaced by an atypical β/γ coupling in children with ASD. This anomaly was the single most specific predictor of individual speech reception difficulties in ASD children. These findings suggest that early interventions (e.g., neurostimulation) targeting the disruption of β/γ coupling and the upregulation of θ/γ coupling could improve speech processing coordination in young children with ASD and help them engage in oral interactions.SIGNIFICANCE STATEMENT Very young children already present marked alterations of neural oscillatory activity in response to natural speech at the time of autism spectrum disorder (ASD) diagnosis. Hierarchical processing of phonemic-range and syllabic-range information (θ/γ coupling) is disrupted in ASD children. Abnormal bottom-up (low-γ) and top-down (low-β) coordination specifically predicts speech reception deficits in very young ASD children, and no other cognitive deficit.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Auditory Language Group, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland, 1202
- Institut Pasteur, Université Paris Cité, Hearing Institute, Paris, France, 75012
| | - Jaime Delgado
- Auditory Language Group, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland, 1202
| | - Silvia Marchesotti
- Auditory Language Group, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland, 1202
| | - Nada Kojovic
- Autism Brain & Behavior Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland, 1202
| | - Holger Franz Sperdin
- Autism Brain & Behavior Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland, 1202
| | - Tonia A Rihs
- Functional Brain Mapping Laboratory, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland, 1202
| | - Marie Schaer
- Autism Brain & Behavior Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland, 1202
| | - Anne-Lise Giraud
- Auditory Language Group, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland, 1202
- Institut Pasteur, Université Paris Cité, Hearing Institute, Paris, France, 75012
| |
Collapse
|
3
|
Karagiorgis AT, Chalas N, Karagianni M, Papadelis G, Vivas AB, Bamidis P, Paraskevopoulos E. Computerized Music-Reading Intervention Improves Resistance to Unisensory Distraction Within a Multisensory Task, in Young and Older Adults. Front Hum Neurosci 2021; 15:742607. [PMID: 34566611 PMCID: PMC8461100 DOI: 10.3389/fnhum.2021.742607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Incoming information from multiple sensory channels compete for attention. Processing the relevant ones and ignoring distractors, while at the same time monitoring the environment for potential threats, is crucial for survival, throughout the lifespan. However, sensory and cognitive mechanisms often decline in aging populations, making them more susceptible to distraction. Previous interventions in older adults have successfully improved resistance to distraction, but the inclusion of multisensory integration, with its unique properties in attentional capture, in the training protocol is underexplored. Here, we studied whether, and how, a 4-week intervention, which targets audiovisual integration, affects the ability to deal with task-irrelevant unisensory deviants within a multisensory task. Musically naïve participants engaged in a computerized music reading game and were asked to detect audiovisual incongruences between the pitch of a song's melody and the position of a disk on the screen, similar to a simplistic music staff. The effects of the intervention were evaluated via behavioral and EEG measurements in young and older adults. Behavioral findings include the absence of age-related differences in distraction and the indirect improvement of performance due to the intervention, seen as an amelioration of response bias. An asymmetry between the effects of auditory and visual deviants was identified and attributed to modality dominance. The electroencephalographic results showed that both groups shared an increase in activation strength after training, when processing auditory deviants, located in the left dorsolateral prefrontal cortex. A functional connectivity analysis revealed that only young adults improved flow of information, in a network comprised of a fronto-parietal subnetwork and a multisensory temporal area. Overall, both behavioral measures and neurophysiological findings suggest that the intervention was indirectly successful, driving a shift in response strategy in the cognitive domain and higher-level or multisensory brain areas, and leaving lower level unisensory processing unaffected.
Collapse
Affiliation(s)
- Alexandros T Karagiorgis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,School of Music Studies, Faculty of Fine Arts, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolas Chalas
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Maria Karagianni
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Papadelis
- School of Music Studies, Faculty of Fine Arts, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ana B Vivas
- Department of Psychology, CITY College, University of York Europe Campus, Thessaloniki, Greece
| | - Panagiotis Bamidis
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Paraskevopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
4
|
Lin HY, Chang WD, Hsieh HC, Yu WH, Lee P. Relationship between intraindividual auditory and visual attention in children with ADHD. RESEARCH IN DEVELOPMENTAL DISABILITIES 2021; 108:103808. [PMID: 33242747 DOI: 10.1016/j.ridd.2020.103808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIM Most previous attention-deficit/hyperactivity disorder (ADHD) studies have used only a single sensory modality (usually vision) to investigate attentional problems, although patients with ADHD might display deficits of auditory attention similar to their visual attention. This study explored intraindividual auditory and visual attention in children with and without ADHD to examine the relationship between these two dimensions of attention. METHODS Attentional performances of 140 children (70 children with ADHD and 70 typically developing peers) were measured through the Test of Variables of Attention (TOVA) in the present study. RESULTS For both groups, most attentional indices showed significant differences between the two modalities (d ranging from 0.32 to 0.72). The correlation coefficients of most of the attentional variables in children with ADHD were lower than their typically developing peers. All attentional indices of children with ADHD (ranging from 12.8%-55.7%) were much higher than those of their typically developing peers (ranging from 1.4%-8.6%). CONCLUSION These results not only indicate that typically developing children display more consistent attentional performance, but also support the view that children with ADHD may show attention deficiency in one modality but not necessarily in the other.
Collapse
Affiliation(s)
- Hung-Yu Lin
- Department of Occupational Therapy at Asia University, Taichung, Taiwan.
| | - Wen-Dien Chang
- Department of Sport Performance at National Taiwan University of Sport, Taichung, Taiwan
| | - Hsieh-Chun Hsieh
- Department of Special Education at National Tsing Hua University, Hsinchu, Taiwan
| | - Wan-Hui Yu
- Department of Occupational Therapy at Asia University, Taichung, Taiwan
| | - Posen Lee
- Department of Occupational Therapy at I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Young and Older Adults Differ in Integration of Sensory Cues for Vertical Perception. J Aging Res 2020; 2020:8284504. [PMID: 32802506 PMCID: PMC7415115 DOI: 10.1155/2020/8284504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/02/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022] Open
Abstract
Introduction The subjective visual vertical (SVV) measures the perception of a person's spatial orientation relative to gravity. Weighted central integration of vestibular, visual, and proprioceptive inputs is essential for SVV perception. Without any visual references and minimal proprioceptive contribution, the static SVV reflects balance of the otolith organs. Normal aging is associated with bilateral and progressive decline in otolith organ function, but age-dependent effects on SVV are inconclusive. Studies on sensory reweighting for visual vertical and multisensory integration strategies reveal age-dependent differences, but most studies have included elderly participants in comparison to younger adults. The aim of this study was to compare young adults with older adults, an age group younger than the elderly. Methods Thirty-three young and 28 older adults (50–65 years old) adjusted a tilted line accurately to their perceived vertical. The rod's final position from true vertical was recorded as tilt error in degrees. For otolithic balance, visual vertical was recorded in the dark without any visual references. The rod and frame task (RFT) with tilted disorienting visual frames was used for creating visuovestibular conflict. We adopted Nyborg's analysis method to derive the rod and frame effect (RFE) and trial-to-trial variability measures. Rod alignment times were also analyzed. Results There was no age difference in signed tilts of SVV without visual reference. There was an age effect on RFE and on overall trial-to-trial variability of rod tilt, with older adults displaying larger frame effects and greater variability in rod tilts. Alignment times were longer in the tilted-frame conditions for both groups and in the older adults compared to their younger counterparts. The association between tilt accuracy and tilt precision was significant for older adults only during visuovestibular conflict, revealing an increase in RFE with an increase in tilt variability. Correlation of σSVV, which represents vestibular input precision, with RFE yielded exactly the same contribution of σSVV to the variance in RFE for both age groups. Conclusions Older adults have balanced otolithic input in an upright position. Increased reliance on visual cues may begin at ages younger than what is considered elderly. Increased alignment times for older adults may create a broader time window for integration of relevant and irrelevant sensory information, thus enhancing their multisensory integration. In parallel with the elderly, older adults may differ from young adults in their integration of sensory cues for visual vertical perception.
Collapse
|