1
|
Wang Q, Bai X, Miao Q, Wang T, Wang X, Xu Q. Isolation and characterization of quorum quenching bacteria from municipal solid waste and bottom ash co-disposal landfills. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1480-1485. [PMID: 36912483 DOI: 10.1177/0734242x231155807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Co-landfilling of bottom ash (BA) accelerates the clogging of leachate collection systems (LCSs) and increases the risk of landfill failure. The clogging was mainly associated with bio-clogging, which may be reduced by quorum quenching (QQ) strategies. This communication reports on a study of how isolated facultative QQ bacterial strains from municipal solid waste (MSW) landfills and BA co-disposal landfills. In MSW landfills, two novel QQ strains (Brevibacillus agri and Lysinibacillus sp. YS11) can degrade the signal molecule hexanoyl-l-homoserine lactone (C6-HSL) and octanoyl-l-homoserine lactone (C8-HSL), respectively. Pseudomonas aeruginosa could degrade C6-HSL and C8-HSL in BA co-disposal landfills. Moreover, P. aeruginosa (0.98) was observed with a higher growth rate (OD600) compared to that of B. agri (0.27) and Lysinibacillus sp. YS11 (0.53). These results indicated that the QQ bacterial strains were associated with leachate characteristics and signal molecules and could be used for controlling bio-clogging in landfills.
Collapse
Affiliation(s)
- Qian Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, PR China
| | - Xinyue Bai
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, PR China
| | - Qianming Miao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, PR China
| | - Tong Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, PR China
| | - Xue Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, PR China
| | - Qiyong Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, PR China
| |
Collapse
|
2
|
Sahreen S, Mukhtar H, Imre K, Morar A, Herman V, Sharif S. Exploring the Function of Quorum Sensing Regulated Biofilms in Biological Wastewater Treatment: A Review. Int J Mol Sci 2022; 23:ijms23179751. [PMID: 36077148 PMCID: PMC9456111 DOI: 10.3390/ijms23179751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Quorum sensing (QS), a type of bacterial cell–cell communication, produces autoinducers which help in biofilm formation in response to cell population density. In this review, biofilm formation, the role of QS in biofilm formation and development with reference to biological wastewater treatment are discussed. Autoinducers, for example, acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2, present in both Gram-negative and Gram-positive bacteria, with their mechanism, are also explained. Over the years, wastewater treatment (WWT) by QS-regulated biofilms and their optimization for WWT have gained much attention. This article gives a comprehensive review of QS regulation methods, QS enrichment methods and QS inhibition methods in biological waste treatment systems. Typical QS enrichment methods comprise adding QS molecules, adding QS accelerants and cultivating QS bacteria, while typical QS inhibition methods consist of additions of quorum quenching (QQ) bacteria, QS-degrading enzymes, QS-degrading oxidants, and QS inhibitors. Potential applications of QS regulated biofilms for WWT have also been summarized. At last, the knowledge gaps present in current researches are analyzed, and future study requirements are proposed.
Collapse
Affiliation(s)
- Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Sundas Sharif
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
3
|
Pekgenc E, Yavuzturk Gul B, Vatanpour V, Koyuncu I. Biocatalytic membranes in anti-fouling and emerging pollutant degradation applications: Current state and perspectives. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Serrano-Aguirre L, Velasco-Bucheli R, García-Álvarez B, Saborido A, Arroyo M, de la Mata I. Novel Bifunctional Acylase from Actinoplanes utahensis: A Versatile Enzyme to Synthesize Antimicrobial Compounds and Use in Quorum Quenching Processes. Antibiotics (Basel) 2021; 10:antibiotics10080922. [PMID: 34438972 PMCID: PMC8388760 DOI: 10.3390/antibiotics10080922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Many intercellular communication processes, known as quorum sensing (QS), are regulated by the autoinducers N-acyl-l-homoserine lactones (AHLs) in Gram-negative bacteria. The inactivation of these QS processes using different quorum quenching (QQ) strategies, such as enzymatic degradation of the autoinducers or the receptor blocking with non-active analogs, could be the basis for the development of new antimicrobials. This study details the heterologous expression, purification, and characterization of a novel N-acylhomoserine lactone acylase from Actinoplanes utahensis NRRL 12052 (AuAHLA), which can hydrolyze different natural penicillins and N-acyl-homoserine lactones (with or without 3-oxo substitution), as well as synthesize them. Kinetic parameters for the hydrolysis of a broad range of substrates have shown that AuAHLA prefers penicillin V, followed by C12-HSL. In addition, AuAHLA inhibits the production of violacein by Chromobacterium violaceum CV026, confirming its potential use as a QQ agent. Noteworthy, AuAHLA is also able to efficiently synthesize penicillin V, besides natural AHLs and phenoxyacetyl-homoserine lactone (POHL), a non-natural analog of AHLs that could be used to block QS receptors and inhibit signal of autoinducers, being the first reported AHL acylase capable of synthesizing AHLs.
Collapse
|
5
|
Wang Q, Zhang T, Wu G, Xu Q. Deciphering acyl-homoserine lactones-mediated quorum sensing on geotextile bio-clogging in municipal solid waste and bottom ash co-disposal landfills. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 124:136-143. [PMID: 33621757 DOI: 10.1016/j.wasman.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Bottom ash co-disposed in landfills accelerates geotextile clogging and decreases landfill stability. As the main contributor to clogging, bio-clogging may be associated with quorum sensing (QS) in microbial communities. This study investigated the potential roles of acyl-homoserine lactones (AHLs)-mediated QS in geotextile bio-clogging under different landfill conditions, including municipal solid waste landfill and bottom ash co-disposal landfill. The unit area of geotextile bio-clogging mass in the municipal solid waste landfill (MSW_G) ranged from 5.2 × 10-3 to 8.2 × 10-3 g/cm2, while it was in the range of 8.4 × 10-3 to 1.2 × 10-2 g/cm2 in the bottom ash co-disposal landfill (BA_G). Two types of AHLs were detected and the total AHLs content in the MSW_G (1,616.9 ± 103.8 ng/g VSS) was half of that in the BA_G (3,233.0 ± 646.8 ng/g VSS). High contents of the AHLs could increase bio-clogging. The bio-clogging was also attributed to QS genes and extracellular polymeric substances (EPS). EPS aggregation was stimulated due to the higher Ca2+ and Mg2+ in the BA_G. These results suggested that the co-disposal of bottom ash could increase the AHLs content, resulting in accelerated bio-clogging.
Collapse
Affiliation(s)
- Qian Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tianqi Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Guangxue Wu
- Civil Engineering, School of Engineering, College of Science and Engineering, National University of Ireland, Galway, Galway, Ireland
| | - Qiyong Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
6
|
Use of Quorum Sensing Inhibition Strategies to Control Microfouling. Mar Drugs 2021; 19:md19020074. [PMID: 33573187 PMCID: PMC7912365 DOI: 10.3390/md19020074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/10/2023] Open
Abstract
Interfering with the quorum sensing bacterial communication systems has been proposed as a promising strategy to control bacterial biofilm formation, a key process in biofouling development. Appropriate in vitro biofilm-forming bacteria models are needed to establish screening methods for innovative anti-biofilm and anti-microfouling compounds. Four marine strains, two Pseudoalteromonas spp. and two Vibrio spp., were selected and studied with regard to their biofilm-forming capacity and sensitivity to quorum sensing (QS) inhibitors. Biofilm experiments were performed using two biofilm cultivation and quantification methods: the xCELLigence® system, which allows online monitoring of biofilm formation, and the active attachment model, which allows refreshment of the culture medium to obtain a strong biofilm that can be quantified with standard staining methods. Although all selected strains produced acyl-homoserine-lactone (AHL) QS signals, only the P. flavipulchra biofilm, measured with both quantification systems, was significantly reduced with the addition of the AHL-lactonase Aii20J without a significant effect on planktonic growth. Two-species biofilms containing P. flavipulchra were also affected by the addition of Aii20J, indicating an influence on the target bacterial strain as well as an indirect effect on the co-cultured bacterium. The use of xCELLigence® is proposed as a time-saving method to quantify biofilm formation and search for eco-friendly anti-microfouling compounds based on quorum sensing inhibition (QSI) strategies. The results obtained from these two in vitro biofilm formation methods revealed important differences in the response of biosensor bacteria to culture medium and conditions, indicating that several strains should be used simultaneously for screening purposes and the cultivation conditions should be carefully optimized for each specific purpose.
Collapse
|
7
|
Penicillin Acylase from Streptomyces lavendulae and Aculeacin A Acylase from Actinoplanes utahensis: Two Versatile Enzymes as Useful Tools for Quorum Quenching Processes. Catalysts 2020. [DOI: 10.3390/catal10070730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many Gram-negative bacteria produce N-acyl-homoserine lactones (AHLs), quorum sensing (QS) molecules that can be enzymatically inactivated by quorum quenching (QQ) processes; this approach is considered an emerging antimicrobial alternative. In this study, kinetic parameters of several AHLs hydrolyzed by penicillin acylase from Streptomyces lavendulae (SlPA) and aculeacin A acylase from Actinoplanes utahensis (AuAAC) have been determined. Both enzymes catalyze efficiently the amide bond hydrolysis in AHLs with different acyl chain moieties (with or without 3-oxo modification) and exhibit a clear preference for AHLs with long acyl chains (C12-HSL > C14-HSL > C10-HSL > C8-HSL for SlPA, whereas C14-HSL > C12-HSL > C10-HSL > C8-HSL for AuAAC). Involvement of SlPA and AuAAC in QQ processes was demonstrated by Chromobacterium violaceum CV026-based bioassays and inhibition of biofilm formation by Pseudomonas aeruginosa, a process controlled by QS molecules, suggesting the application of these multifunctional enzymes as quorum quenching agents, this being the first time that quorum quenching activity was shown by an aculeacin A acylase. In addition, a phylogenetic study suggests that SlPA and AuAAC could be part of a new family of actinomycete acylases, with a preference for substrates with long aliphatic acyl chains, and likely involved in QQ processes.
Collapse
|
8
|
Muras A, Otero-Casal P, Blanc V, Otero A. Acyl homoserine lactone-mediated quorum sensing in the oral cavity: a paradigm revisited. Sci Rep 2020; 10:9800. [PMID: 32555242 PMCID: PMC7300016 DOI: 10.1038/s41598-020-66704-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
Acyl homoserine lactones (AHLs), the quorum sensing (QS) signals produced by Gram-negative bacteria, are currently considered to play a minor role in the development of oral biofilm since their production by oral pathogens has not been ascertained thus far. However, we report the presence of AHLs in different oral samples and their production by the oral pathogen Porphyromonas gingivalis. The importance of AHLs is further supported by a very high prevalence of AHL-degradation capability, up to 60%, among bacteria isolated from dental plaque and saliva samples. Furthermore, the wide-spectrum AHL-lactonase Aii20J significantly inhibited oral biofilm formation in different in vitro biofilm models and caused important changes in bacterial composition. Besides, the inhibitory effect of Aii20J on a mixed biofilm of 6 oral pathogens was verified using confocal microscopy. Much more research is needed in order to be able to associate specific AHLs with oral pathologies and to individuate the key actors in AHL-mediated QS processes in dental plaque formation. However, these results indicate a higher relevance of the AHLs in the oral cavity than generally accepted thus far and suggest the potential use of inhibitory strategies against these signals for the prevention and treatment of oral diseases.
Collapse
Affiliation(s)
- Andrea Muras
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paz Otero-Casal
- Departamento de Ciruxía e Especialidade Médico-Cirúrxica, Facultade de Medicina e Odontoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Unit of Oral Health, C.S. Santa Comba-Negreira, SERGAS, Spain
| | - Vanessa Blanc
- Department of Microbiology, Dentaid Research Center, Dentaid S.L., Barcelona, Spain
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Fan X, Ye T, Li Q, Bhatt P, Zhang L, Chen S. Potential of a Quorum Quenching Bacteria Isolate Ochrobactrum intermedium D-2 Against Soft Rot Pathogen Pectobacterium carotovorum subsp. carotovorum. Front Microbiol 2020; 11:898. [PMID: 32457732 PMCID: PMC7227377 DOI: 10.3389/fmicb.2020.00898] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/16/2020] [Indexed: 02/05/2023] Open
Abstract
Quorum quenching (QQ) is a promising strategy for preventing and controlling quorum sensing (QS)-mediated bacterial infections. It interferes with QS by the inhibition of signal synthesis, the detection of enzyme-catalyzed degradation, and the modification of signals. N-Acyl homoserine lactones (AHLs) represent a family of widely conserved QS signals involved in the regulation of virulence factor production in many Gram-negative bacterial pathogens. In this study, AHL-degrading bacterial strains were isolated, and the most efficient one was evaluated for its potential against QS-mediated pathogens. Results showed that an AHL-degrading bacteria Ochrobactrum intermedium D-2 effectively attenuated maceration produced by the pathogen Pectobacterium carotovorum subsp. carotovorum (Pcc) on radish and potato slices. Strain D-2 exhibited a superior AHL degradation activity and efficiently degraded various AHLs, including N-hexanoyl-L-homoserine lactone (C6HSL), N-(3-oxohexanoyl)-L-homoserine lactone (3OC6HSL), N-(3-oxooctanoyl)-L-homoserine lactone (3OC8HSL), and N-(3-oxododecanoyl)-L-homoserine lactone (3OC12HSL). Analysis of the degradation products of AHL by gas chromatography-mass spectrometry led to the identification of N-cyclohexyl-propanamide and propanamide as the main intermediate products, suggesting that AHL was degraded by hydrolysis. Annotation and analysis of the whole genome sequence of strain D-2 revealed the presence of an AHL-lactonase, termed AidF. Moreover, the application of strain D-2 was able to substantially reduce the disease severity caused by Pcc on host plants. These results reveal the biochemical basis of a highly efficient AHL-degrading bacterial isolate and present the potential to attenuate Pcc virulence through QQ.
Collapse
Affiliation(s)
- Xinghui Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Tian Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lianhui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
10
|
Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.06.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|