1
|
Mi K, Xu R, Liu X. RFW captures species-level metagenomic functions by integrating genome annotation information. CELL REPORTS METHODS 2024; 4:100932. [PMID: 39662474 DOI: 10.1016/j.crmeth.2024.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/01/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Functional profiling of whole-metagenome shotgun sequencing (WMS) enables our understanding of microbe-host interactions. We demonstrate microbial functional information loss by current annotation methods at both the taxon and community levels, particularly at lower read depths. To address information loss, we develop a framework, RFW (reference-based functional profile inference on WMS), that utilizes information from genome functional annotations and taxonomic profiles to infer microbial function abundances from WMS. Furthermore, we provide an algorithm for absolute abundance change quantification between groups as part of the RFW framework. By applying RFW to several datasets related to autism spectrum disorder and colorectal cancer, we show that RFW augments downstream analyses, such as differential microbial function identification and association analysis between microbial function and host phenotype. RFW is open source and freely available at https://github.com/Xingyinliu-Lab/RFW.
Collapse
Affiliation(s)
- Kai Mi
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Rui Xu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Xingyin Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China; The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
2
|
Shahrokny P, Maison N, Riemann L, Ehrmann M, DeLuca D, Schuchardt S, Thiele D, Weckmann M, Dittrich AM, Schaub B, Brinkmann F, Hansen G, Kopp MV, von Mutius E, Rabe KF, Bahmer T, Hohlfeld JM, Grychtol R, Holz O. Increased breath naphthalene in children with asthma and wheeze of the All Age Asthma Cohort (ALLIANCE). J Breath Res 2023; 18:016003. [PMID: 37604132 DOI: 10.1088/1752-7163/acf23e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Exhaled breath contains numerous volatile organic compounds (VOCs) known to be related to lung disease like asthma. Its collection is non-invasive, simple to perform and therefore an attractive method for the use even in young children. We analysed breath in children of the multicenter All Age Asthma Cohort (ALLIANCE) to evaluate if 'breathomics' have the potential to phenotype patients with asthma and wheeze, and to identify extrinsic risk factors for underlying disease mechanisms. A breath sample was collected from 142 children (asthma: 51, pre-school wheezers: 55, healthy controls: 36) and analysed using gas chromatography-mass spectrometry (GC/MS). Children were diagnosed according to Global Initiative for Asthma guidelines and comprehensively examined each year over up to seven years. Forty children repeated the breath collection after 24 or 48 months. Most breath VOCs differing between groups reflect the exposome of the children. We observed lower levels of lifestyle-related VOCs and higher levels of the environmental pollutants, especially naphthalene, in children with asthma or wheeze. Naphthalene was also higher in symptomatic patients and in wheezers with recent inhaled corticosteroid use. No relationships with lung function or TH2 inflammation were detected. Increased levels of naphthalene in asthmatics and wheezers and the relationship to disease severity could indicate a role of environmental or indoor air pollution for the development or progress of asthma. Breath VOCs might help to elucidate the role of the exposome for the development of asthma. The study was registered at ClinicalTrials.gov (NCT02496468).
Collapse
Affiliation(s)
- P Shahrokny
- Fraunhofer ITEM, Department of Clinical Airway Research, German Center for Lung Research (BREATH, DZL), Hannover, Germany
| | - N Maison
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Germany German Center for Lung Research (CPC-M, DZL), Munich, Germany
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - L Riemann
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, German Center for Lung Research (BREATH, DZL), Hannover, Germany
- Clinician Scientist Program TITUS, Else-Kröner-Fresenius-Stiftung, Hannover Medical School, Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - M Ehrmann
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Germany German Center for Lung Research (CPC-M, DZL), Munich, Germany
| | - D DeLuca
- German Center for Lung Research (BREATH, DZL), Hannover, Germany
| | - S Schuchardt
- Fraunhofer ITEM, Bio- and Environmental Analytics, Hannover, Germany
| | - D Thiele
- Division of Pediatric Pulmonology and Allergology, University Children's Hospital, German Center for Lung Research (ARCN, DZL), Luebeck, Germany
- Institute of Medical Biometry and Statistics (IMBS), University Medical Center Schleswig-Holstein, Luebeck, Germany
| | - M Weckmann
- Division of Pediatric Pulmonology and Allergology, University Children's Hospital, German Center for Lung Research (ARCN, DZL), Luebeck, Germany
- Epigenetics of Chronic Lung Disease, Priority Research Area Chronic Lung Diseases, Leibniz Lung Research Center Borstel, Borstel, Germany
| | - A M Dittrich
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, German Center for Lung Research (BREATH, DZL), Hannover, Germany
| | - B Schaub
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Germany German Center for Lung Research (CPC-M, DZL), Munich, Germany
| | - F Brinkmann
- Division of Pediatric Pulmonology and Allergology, University Children's Hospital, German Center for Lung Research (ARCN, DZL), Luebeck, Germany
| | - G Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, German Center for Lung Research (BREATH, DZL), Hannover, Germany
| | - M V Kopp
- Division of Pediatric Pulmonology and Allergology, University Children's Hospital, German Center for Lung Research (ARCN, DZL), Luebeck, Germany
- Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - E von Mutius
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Germany German Center for Lung Research (CPC-M, DZL), Munich, Germany
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - K F Rabe
- LungenClinic Grosshansdorf and Department of Medicine, Christian-Albrechts-University Kiel, German Center for Lung Research (ARCN, DZL), Grosshansdorf, Germany
| | - T Bahmer
- LungenClinic Grosshansdorf and Department of Medicine, Christian-Albrechts-University Kiel, German Center for Lung Research (ARCN, DZL), Grosshansdorf, Germany
- Internal Medicine Department I, University Hospital Schleswig-Holstein, UKSH - Campus Kiel, German Center for Lung Research (ARCN, DZL), Kiel, Germany
| | - J M Hohlfeld
- Fraunhofer ITEM, Department of Clinical Airway Research, German Center for Lung Research (BREATH, DZL), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School (MHH), Hannover, Germany
| | - R Grychtol
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, German Center for Lung Research (BREATH, DZL), Hannover, Germany
| | - O Holz
- Fraunhofer ITEM, Department of Clinical Airway Research, German Center for Lung Research (BREATH, DZL), Hannover, Germany
| |
Collapse
|
3
|
Yost EE, Galizia A, Kapraun DF, Persad AS, Vulimiri SV, Angrish M, Lee JS, Druwe IL. Health Effects of Naphthalene Exposure: A Systematic Evidence Map and Analysis of Potential Considerations for Dose-Response Evaluation. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:76002. [PMID: 34251878 PMCID: PMC8274693 DOI: 10.1289/ehp7381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Naphthalene is a polycyclic aromatic hydrocarbon that has been associated with health effects, including cancer. As the state of the science on naphthalene toxicity continues to evolve, updated toxicity reference value(s) may be required to support human health risk assessment. OBJECTIVES We present a systematic evidence map of studies that could be used to derive toxicity reference value(s) for naphthalene. METHODS Human and animal health effect studies and physiologically based pharmacokinetic (PBPK) models were identified from a literature search based on populations, exposures, comparators, and outcomes (PECO) criteria. Human and animal studies meeting PECO criteria were refined to a smaller subset considered most informative for deriving chronic reference value(s), which are preferred for assessing risk to the general public. This subset was evaluated for risk of bias and sensitivity, and the suitability of each study for dose-response analysis was qualitatively assessed. Lowest observed adverse effect levels (LOAELs) were extracted and summarized. Other potentially relevant studies (e.g., mechanistic and toxicokinetic studies) were tracked as supplemental information but not evaluated further. Existing reference values for naphthalene are also summarized. RESULTS We identified 26 epidemiology studies and 16 animal studies that were considered most informative for further analysis. Eleven PBPK models were identified. The available epidemiology studies generally had significant risk of bias and/or sensitivity concerns and were mostly found to have low suitability for dose-response analysis due to the nature of the exposure measurements. The animal studies had fewer risk of bias and sensitivity concerns and were mostly found to be suitable for dose-response analysis. CONCLUSION Although both epidemiological and animal studies of naphthalene provide weight of evidence for hazard identification, the available animal studies appear more suitable for reference value derivation. PBPK models and mechanistic and toxicokinetic data can be applied to extrapolate these animal data to humans, considering mode of action and interspecies metabolic differences. https://doi.org/10.1289/EHP7381.
Collapse
Affiliation(s)
- Erin E. Yost
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Audrey Galizia
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Dustin F. Kapraun
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Amanda S. Persad
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Suryanarayana V. Vulimiri
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Michelle Angrish
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Janice S. Lee
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| | - Ingrid L. Druwe
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| |
Collapse
|