1
|
Curzel F, Tillmann B, Ferreri L. Lights on music cognition: A systematic and critical review of fNIRS applications and future perspectives. Brain Cogn 2024; 180:106200. [PMID: 38908228 DOI: 10.1016/j.bandc.2024.106200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Research investigating the neural processes related to music perception and production constitutes a well-established field within the cognitive neurosciences. While most neuroimaging tools have limitations in studying the complexity of musical experiences, functional Near-Infrared Spectroscopy (fNIRS) represents a promising, relatively new tool for studying music processes in both laboratory and ecological settings, which is also suitable for both typical and pathological populations across development. Here we systematically review fNIRS studies on music cognition, highlighting prospects and potentialities. We also include an overview of fNIRS basic theory, together with a brief comparison to characteristics of other neuroimaging tools. Fifty-nine studies meeting inclusion criteria (i.e., using fNIRS with music as the primary stimulus) are presented across five thematic sections. Critical discussion of methodology leads us to propose guidelines of good practices aiming for robust signal analyses and reproducibility. A continuously updated world map is proposed, including basic information from studies meeting the inclusion criteria. It provides an organized, accessible, and updatable reference database, which could serve as a catalyst for future collaborations within the community. In conclusion, fNIRS shows potential for investigating cognitive processes in music, particularly in ecological contexts and with special populations, aligning with current research priorities in music cognition.
Collapse
Affiliation(s)
- Federico Curzel
- Laboratoire d'Étude des Mécanismes Cognitifs (EMC), Université Lumière Lyon 2, Bron, Auvergne-Rhône-Alpes, 69500, France; Lyon Neuroscience Research Center (CRNL), INSERM, U1028, CNRS, UMR 5292, Université Claude Bernard Lyon1, Université de Lyon, Bron, Auvergne-Rhône-Alpes, 69500, France.
| | - Barbara Tillmann
- Lyon Neuroscience Research Center (CRNL), INSERM, U1028, CNRS, UMR 5292, Université Claude Bernard Lyon1, Université de Lyon, Bron, Auvergne-Rhône-Alpes, 69500, France; LEAD CNRS UMR5022, Université de Bourgogne-Franche Comté, Dijon, Bourgogne-Franche Comté 21000, France.
| | - Laura Ferreri
- Laboratoire d'Étude des Mécanismes Cognitifs (EMC), Université Lumière Lyon 2, Bron, Auvergne-Rhône-Alpes, 69500, France; Department of Brain and Behavioural Sciences, Università di Pavia, Pavia, Lombardia 27100, Italy.
| |
Collapse
|
2
|
Ding K, Li J, Li X, Li H. Understanding the Effect of Listening to Music, Playing Music, and Singing on Brain Function: A Scoping Review of fNIRS Studies. Brain Sci 2024; 14:751. [PMID: 39199446 PMCID: PMC11352997 DOI: 10.3390/brainsci14080751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Music is integrated into daily life when listening to it, playing it, and singing, uniquely modulating brain activity. Functional near-infrared spectroscopy (fNIRS), celebrated for its ecological validity, has been used to elucidate this music-brain interaction. This scoping review synthesizes 22 empirical studies using fNIRS to explore the intricate relationship between music and brain function. This synthesis of existing evidence reveals that diverse musical activities, such as listening to music, singing, and playing instruments, evoke unique brain responses influenced by individual traits and musical attributes. A further analysis identifies five key themes, including the effect of passive and active music experiences on relevant human brain areas, lateralization in music perception, individual variations in neural responses, neural synchronization in musical performance, and new insights fNIRS has revealed in these lines of research. While this review highlights the limited focus on specific brain regions and the lack of comparative analyses between musicians and non-musicians, it emphasizes the need for future research to investigate the complex interplay between music and the human brain.
Collapse
Affiliation(s)
- Keya Ding
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200233, China; (K.D.); (J.L.); (X.L.)
- Lab for Educational Big Data and Policymaking, Ministry of Education, Shanghai 200234, China
- Key Laboratory of Child Development and Learning Science, Ministry of Education, Research Center for Learning Science, Southeast University, Nanjing 210096, China
| | - Jingwen Li
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200233, China; (K.D.); (J.L.); (X.L.)
| | - Xuemei Li
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200233, China; (K.D.); (J.L.); (X.L.)
| | - Hui Li
- Faculty of Education and Human Development, The Education University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Jeong E, Ireland SJ. Criterion-Related Validation of a Music-Based Attention Assessment for Individuals with Traumatic Brain Injury. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16285. [PMID: 36498353 PMCID: PMC9738551 DOI: 10.3390/ijerph192316285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The music-based attention assessment (MAA) is a melody contour identification task that evaluates different types of attention. Previous studies have examined the psychometric and physiological validity of the MAA across various age groups in clinical and typical populations. The purpose of this study was to confirm the MAA's criterion validity in individuals with traumatic brain injury (TBI) and to correlate this with standardized neuropsychological measurements. The MAA and various neurocognitive tests (i.e., the Wechsler adult intelligence scale DST, Delis-Kaplan executive functioning scale color-word interference test, and Conner's continuous performance test) were administered to 38 patients within two weeks prior to or post to the MAA administration. Significant correlations between MAA and neurocognitive batteries were found, indicating the potential of MAA as a valid measure of different types of attention deficits. An additional multiple regression analysis revealed that MAA was a significant factor in predicting attention ability.
Collapse
Affiliation(s)
- Eunju Jeong
- Department of Music Therapy, Graduate School, Ewha Womans University, Seoul 03760, Republic of Korea
| | | |
Collapse
|
4
|
fNIRS & e-drum: An ecological approach to monitor hemodynamic and behavioural effects of rhythmic auditory cueing training. Brain Cogn 2021; 151:105753. [PMID: 34020165 DOI: 10.1016/j.bandc.2021.105753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/03/2021] [Accepted: 05/03/2021] [Indexed: 01/05/2023]
Abstract
Converging evidence suggests a beneficial effect of rhythmic music-therapy in easing motor dysfunctions. Nevertheless, the neural systems underpinning both the direct effect and the influence of rhythm on movement control and execution during training in ecological settings are still largely unknown. In this study, we propose an ecological approach to monitor brain activity and behavioural performance during rhythmic auditory cueing short-term training. Our approach envisages the combination of functional near-infrared spectroscopy (fNIRS), which is a non-invasive neuroimaging technique that allows unconstrained movements of participants, with electronic drum (e-drum), which is an instrument able to collect behavioural tapping data in real time. The behavioural and brain effects of this short-term training were investigated on a group of healthy participants, who well tolerated the experimental settings, since none of them withdrew from the study. The rhythmic auditory cueing short-term training improved beat regularity and decreased group variability. At the group level, the training resulted in a reduction of brain activity primarily in premotor areas. Furthermore, participants with the highest behavioural improvement during training showed the smallest reduction in brain activity. Overall, we conclude that our study could pave the way towards translating the proposed approach to clinical settings.
Collapse
|
5
|
Jo G, Kim YM, Jun DW, Jeong E. Pitch Processing Can Indicate Cognitive Alterations in Chronic Liver Disease: An fNIRS Study. Front Hum Neurosci 2020; 14:535775. [PMID: 33132872 PMCID: PMC7578697 DOI: 10.3389/fnhum.2020.535775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
Early detection and evaluation of cognitive alteration in chronic liver disease is important for predicting the subsequent development of hepatic encephalopathy. While visuomotor tasks have been rigorously employed for cognitive evaluation in chronic liver disease, there is a paucity of auditory processing task. Here we focused on auditory perception and examined behavioral and haemodynamic responses to a melodic contour identification task (CIT) to compare cognitive abilities in patients with chronic liver disease (CLD, N = 30) and healthy controls (N = 25). Further, we used support vector machines to examine the optimal combination of channels of functional near-infrared spectroscopy that can classify cognitive alterations in CLD. Behavioral findings showed that CIT performance was significantly worse in the patient group and CIT significantly correlated with neurocognitive evaluation (i.e., number connection test, digit span test). The findings indicated that CIT can measure auditory cognitive capacity and its difference existing between patient group and healthy controls. Additionally, optimal subsets classified the 16-dimensional haemodynamic data with 78.35% classification accuracy, yielding markers of cognitive alterations in the prefrontal regions (CH6, CH7, CH10, CH13, CH14, and CH16). The results confirmed the potential use of behavioral as well as haemodynamic responses to music perception as an alternative or supplementary method for evaluating cognitive alterations in chronic liver disease.
Collapse
Affiliation(s)
- Geonsang Jo
- Daehong Communications Inc, Seoul, South Korea
| | - Young-Min Kim
- Graduate School of Technology and Innovation Management, Hanyang University, Seoul, South Korea
- College of Interdisciplinary Industrial Studies, Hanyang University, Seoul, South Korea
| | - Dae Won Jun
- Department of Internal Medicine, College of Medicine, Hanyang University, Seoul, South Korea
- *Correspondence: Dae Won Jun
| | - Eunju Jeong
- College of Interdisciplinary Industrial Studies, Hanyang University, Seoul, South Korea
- Department of Music and Science for Clinical Practice, Hanyang University, Seoul, South Korea
- Eunju Jeong
| |
Collapse
|