1
|
Ávila Vázquez V, Aguilera Flores MM, Veyna Robles AN, Solís Lerma LE, Sánchez Mata O, Durón Torres SM. Determination of Lead in Fruit Grown in the Vicinity of Tailings Dams of a Mine in Zacatecas, Mexico. TOXICS 2025; 13:188. [PMID: 40137515 PMCID: PMC11946040 DOI: 10.3390/toxics13030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
This study analyzed the lead concentrations in fruit grown near tailings dams of a mine in Zacatecas (Mexico) using electrochemical techniques. A 3 × 4 factorial design, with three levels of apple tree distance (low, medium, and high) and four levels of apple tree part (stem, leaf, pulp, and peel), was performed to predict the pathway for contamination (foliar or radicular). Samples of each apple tree part, soil, and irrigation water were collected. The lead concentrations were determined by anodic stripping voltammetry. The results showed lead concentrations of 172 ppm and 0.012 ppm for the soil and irrigation water, which were discarded as sources of contamination since they were below the allowable limits by the Mexican standards (400 ppm and 2 ppm, respectively). However, lead concentrations in the stem and leaf ranged from 6.6 ppm to 30.7 ppm, and pulp and peel exceeded 300 times the allowable limit by the Codex Alimentarius (0.1 ppm). The apple tree part was a significant factor in the experimental design. Hence, it was predicted that the pathway for contamination is by foliar absorption. The fruit is highly contaminated by its proximity to the mine. Therefore, mitigation actions must be performed to avoid health risks for the consumers of this fruit.
Collapse
Affiliation(s)
- Verónica Ávila Vázquez
- Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico; (V.Á.V.); (O.S.M.)
| | - Miguel Mauricio Aguilera Flores
- Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico; (V.Á.V.); (O.S.M.)
| | - Agali Naivy Veyna Robles
- Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico; (V.Á.V.); (O.S.M.)
| | - Lilia Elizabeth Solís Lerma
- Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico; (V.Á.V.); (O.S.M.)
| | - Omar Sánchez Mata
- Interdisciplinary Professional Unit of Engineering, Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico; (V.Á.V.); (O.S.M.)
| | - Sergio Miguel Durón Torres
- Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Carr. Zacatecas-Guadalajara Km. 6, Ejido la Escondida, Zacatecas 98160, Mexico
| |
Collapse
|
2
|
Wang T, Li Y, Yang Y, Wang M, Chen W. Bayesian risk prediction model: An accessible strategy to predict cadmium contamination risk in wheat grain grown in alkaline soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 354:124169. [PMID: 38759747 DOI: 10.1016/j.envpol.2024.124169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Excessive cadmium (Cd) concentration in wheat grain is becoming a widespread concern in China. Considering the complexity of Cd transfer in the soil-wheat system, how the Cd risk in wheat grain be accurately predicted from the limited details available is of great significance for the risk management of Cd. Bayes' theory could leverage existing data by combining prior information and observational data, providing a promising strategy with which to calculate a more robust posterior probability of a grain sample exceeding the food safety standard (FSS) for Cd (0.1 mg kg-1). In the current study, a risk prediction model, based on Bayes' theory, was established to achieve a more accurate prediction of the wheat grain Cd risk from a limited number of soil parameters. The risk prediction model could predict the risk probability of wheat grain with a Cd concentration exceeding the FSS under a given soil concentration of either total Cd or diethylenetriaminepentaacetic acid (DTPA)-extractable Cd. Soil total Cd concentration proved to be a better variable for the model with greater predictive accuracy. The model predicted that fewer than 5% of the wheat grain would have a Cd concentration exceeding the FSS when grown in soil with a total Cd concentration of less than 0.299 mg kg-1. The risk probability rose significantly to 50% when the soil total Cd reached 0.778 mg kg-1. The accuracy of the model was greater than the widely applied multiple linear regression model, whereas previously published data from similar soil conditions also confirmed that the Bayesian model could predict wheat Cd risk with minimal error. The proposed model provides an accurate, accessible and cost-effective methodology for predicting Cd risk in wheat grown in alkaline soils before harvest. The wider application to other soil conditions, crops or contaminants using the Bayesian model is also promising for risk management authorities.
Collapse
Affiliation(s)
- Tianqi Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanling Li
- Tianjin Key Laboratory for Dredging Engineer Enterprises, China Communications Construction Company Tianjin Dredging Co., Ltd., Tianjin, 300461, China
| | - Yang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Meie Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weiping Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
3
|
Ma C, Lin L, Yang J, Liu F, Berrettoni M, Zhang K, Liu N, Zhang H. Mechanisms of lead uptake and accumulation in wheat grains based on atmospheric deposition-soil sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163845. [PMID: 37146818 DOI: 10.1016/j.scitotenv.2023.163845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Lead (Pb) accumulation in wheat grains depends on two aspects: i) Pb uptake by the roots and shoots, and ii) the translocation of organ Pb into the grain. However, the underlying mechanism of the uptake and transport of Pb in wheat remains unclear. This study explored this mechanism by establishing field leaf-cutting comparison treatments. Interestingly, as the organ with the highest Pb concentration, only 20.40 % of the root's relative contribution to grain Pb. The relative contributions of the spike, flag leaf, second leaf, and third leaf to grain Pb were 33.13 %, 23.57 %, 13.21 %, and 9.69 %, respectively, which was opposite to their Pb concentration distribution trends. According to Pb isotope analysis, it was found leaf-cutting treatments reduced the proportion of atmospheric Pb in grain, and grain Pb predominantly comes from atmospheric deposition (79.60 %). Furthermore, from the bottom to the top, the concentration of Pb in internodes decreased gradually, and the proportions of Pb originating from soil in the nodes also decreased, revealing that wheat nodes hindered the translocation of Pb from roots and leaves to the grain. Therefore, the hindering effect of nodes on the migration of soil Pb in wheat resulted in atmospheric Pb having a more convenient pathway to the grain than soil Pb, and further leading grain Pb accumulation primarily depended on the contribution of the flag leaf and spike.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Lin Lin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Junxing Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Fuyong Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China; Department of Chemistry, University of Camerino, 62032 Camerino, Macerata, Italy
| | - Mario Berrettoni
- Department of Chemistry, University of Camerino, 62032 Camerino, Macerata, Italy
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Nan Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| |
Collapse
|
4
|
Ma C, Xie P, Yang J, Liu F, Hu H, Du J, Zhang K, Lin L, Zhang H. Relative contribution of environmental medium and internal organs to lead accumulation of wheat grain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151832. [PMID: 34813811 DOI: 10.1016/j.scitotenv.2021.151832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Lead (Pb) pollution in wheat has received considerable research attention globally due to its persistence and ease of accumulation, posing severe health risks to humans. This study explored the relative contribution of the environmental medium (atmospheric deposition and soil) and wheat internal organs to Pb accumulation in wheat grains, using field experiments by contrasting treatments. The concentration and bioavailability of Pb in the soil were significantly lower than those of atmospherically deposited Pb (P < 0.05). Pb accumulation rate in wheat grains was consistent with the grain filling rate, which first increased and then decreased, reaching the highest level at the middle filling stage. Pb isotope analysis showed that atmospheric deposition was the main source of Pb in the shoots of wheat plants, contributing more than 80.0% of Pb in grains. Although the roots had the highest Pb concentration, the spikes had the greatest relative contribution (58.4%) to Pb accumulation in the wheat grains, followed by that of the leaves (24.5%), whereas the contribution of roots was the lowest (17.1%) among all plant organs. In addition, among all leaves, the contribution of flag leaves to Pb accumulation in the grain was higher than the cumulative contribution of all other leaves, where flag leaves and other leaves contributed 13.8% and 10.7%, respectively. Collectively, the absorption of atmospherically deposited Pb by wheat spikes is the leading cause of Pb pollution in wheat grains. These results may aid in formulating strategies to reduce Pb concentration in grains and ensure food quality and safety.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Pan Xie
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Jun Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Fuyong Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Huafeng Hu
- Henan University of Animal Husbandry and Economy, Zhengzhou 45001, China
| | - Jun Du
- Henan Academy of agricultural sciences, Zhengzhou 45001, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Lin Lin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| |
Collapse
|
5
|
Ma C, Xie P, Zhang K, Yang J, Li X, Liu F, Lin L, Zhang H. Contribution of the flag leaf to lead absorption in wheat grain at the grain-filling stage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112722. [PMID: 34478986 DOI: 10.1016/j.ecoenv.2021.112722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Wheat flag leaf (FL) is one of the primary sources of carbohydrates in grains; however, its role in grain lead (Pb) absorption remains unclear. A field experiment was conducted to assess the relative contribution of the FL to Pb accumulation in wheat grain by two contrasting treatments: without (CK) and with FL removal (FLR) at the grain-filling stage. The Pb concentration in leaves was closely related to leaf strata and decreased from FL to the third leaf. FLR treatment significantly reduced the yield and grain Pb concentration by 2.79% and 11.47%, respectively. The contribution of FL to grain Pb accumulation decreased gradually with the filling process, from 35.08% (at early stage) to 13.94% (at maturity stage). After FLR, the contribution proportion of atmospheric fallout to grain Pb decreased from 69.01% (CK) to 62.43% (FLR). Combined isotope analysis with scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS) revealed that the main contribution of FLs to grain Pb originated from Pb fallout in fine atmospheric particles. Therefore, taking measures to reduce the influence of fine atmospheric particles on wheat may be an effective way to control wheat grain Pb contamination.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Pan Xie
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Junxing Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xuanzhen Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Fuyong Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Lin Lin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| |
Collapse
|
6
|
Fang H, Gui H, Li J, Yu H, Wang M, Jiang Y, Wang C, Chen C, Zhang Y, Huang Y. Risks Assessment Associated with Different Sources of Metals in Abandoned Soil of Zhuxianzhuang Coal Mine, Huaibei Coalfield (Anhui, China). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:370-376. [PMID: 33392689 DOI: 10.1007/s00128-020-03069-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
In this paper, the 36 topsoil (0-10 cm) samples were collected and the contents of Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb were analyzed. The results indicated that the contents of Cu and As in all samples exceeded the soil background values of Anhui province, while the Co and Pb contents were lower than the background values. Geo-statistics and positive matrix factorization were applied to identify the sources of soil heavy metals, which were nature factor (15.7%), industrial activities (21.2%), coal mine (50.9%) and traffic emission (12.2%), respectively. The calculation results of health risk model based on positive matrix factorization model showed that coal mine activities accounted for the largest proportion of total source contribution, followed by industrial activities. In addition, compared with adults, the trend of health risk of children from four sources in three lands were same as adults, but their health risk was higher than adults.
Collapse
Affiliation(s)
- Hongxia Fang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, Anhui, China
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China
| | - Herong Gui
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China.
| | - Jun Li
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China
- School of Resources and Environmental Engineering of Hefei University of Technology, Hefei, 232000, Anhui, China
| | - Hao Yu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, Anhui, China
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China
| | - Meichen Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, Anhui, China
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China
| | - Yaqi Jiang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, Anhui, China
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China
| | - Chunlei Wang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, Anhui, China
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China
| | - Chen Chen
- School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, Anhui, China
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China
| | - Yaru Zhang
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China
| | - Yiheng Huang
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, 234000, Anhui, China
| |
Collapse
|
7
|
Chen D, Chen H, Zhao J, Xu Z, Li W, Xu M. Improving spatial prediction of health risk assessment for Hg, As, Cu, and Pb in soil based on land-use regression. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1415-1428. [PMID: 31776887 DOI: 10.1007/s10653-019-00432-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Heavy-metal pollution is a significant health and environmental concern in areas of rapid industrialization in China. The accuracy of spatial mapping of pollutant is the main constraint on spatial prediction of health risks. Our study addressed the possibility of improving spatial prediction accuracy of risk assessment. We developed land-use regression (LUR) models for Hg, As, Cu, and Pb based on surface soil sampling, land-use data, and soil properties. The regression results suggested that LUR was more accurate than ordinary kriging method. Spatial prediction accuracy of Hg, As, Cu, and Pb were improved by 15%, 59%, 36%, and 20%, respectively. Then, spatial distribution of health risk was assessed by using distributions of heavy metal and exposure parameters. Chronic risk of children was controlled by distribution of Pb and carcinogenic controlled by As. The result indicated that Pb and As were the main sources of health risk for children in Kunshan. Chronic and carcinogenic risk maps could clearly show where we should pay attention to and control the risk. This study provided a simple approach to draw spatially explicit maps of health risk which were useful for pollution control and public health risk management.
Collapse
Affiliation(s)
- Dongxiang Chen
- Zhejiang University of Finance & Economics Dongfang College, Haining, 314408, China
- Key Laboratory of Urban Land Resources Monitoring and Simulation, Shenzhen, 510034, China
| | - Hao Chen
- School of Geographic and Oceanographic Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Jun Zhao
- Key Laboratory of Urban Land Resources Monitoring and Simulation, Shenzhen, 510034, China
| | - Zhenci Xu
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Wuyan Li
- Institute of Land and Urban-Rural Development, Zhejiang University of Finance & Economics, Hangzhou, 310018, China.
| | - Mingxing Xu
- Zhejiang Institute of Geological Survey, Hangzhou, 311203, China.
| |
Collapse
|
8
|
Ma C, Liu FY, Hu B, Wei MB, Zhao JH, Zhang K, Zhang HZ. Direct evidence of lead contamination in wheat tissues from atmospheric deposition based on atmospheric deposition exposure contrast tests. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109688. [PMID: 31550569 DOI: 10.1016/j.ecoenv.2019.109688] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
A field experiment was conducted to assess the atmospheric deposition effects on lead (Pb) contamination in wheat by two contrasting treatments: wheat exposed or not to atmospheric deposition. Plants were housed in a shed during wheat greening for the non-exposed treatment. The Pb contents of wheat during different growth stages, of soil and of atmospheric deposits were analysed and combined with Pb stable isotope data to quantify the contribution of atmospheric deposition and soil to Pb in wheat tissue. The Pb content in atmospheric deposits was significantly higher than those in soil and wheat tissue, and the Pb content in wheat tissue exposed to atmospheric deposition was significantly higher than the Pb content in non-exposed tissue (p < 0.05). The 206Pb/207Pb of soil was significantly higher than the 206Pb/207Pb of atmospheric deposits (p < 0.05), and soil and atmospheric deposition were the two sources of Pb in wheat tissue. Atmospheric deposition was the main source of wheat tissue Pb in the exposed treatment, and most of the wheat tissue Pb, except for that in the stem, also came from atmospheric deposition in the maturing stage. The proportion of Pb from atmospheric deposition in roots, stems and leaves evidently decreased after the shed was erected, and the contribution of Pb from atmospheric deposition to wheat tissue was significantly higher in the exposed treatment than in the non-exposed treatment (p < 0.05). This contrast test directly confirmed that atmospheric deposition was the main source of Pb in the wheat tissues. Therefore, taking measures to reduce the absorption of Pb by wheat from atmospheric deposition can effectively ensure food safety.
Collapse
Affiliation(s)
- Chuang Ma
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China.
| | - Fu-Yong Liu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Bin Hu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ming-Bao Wei
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ji-Hong Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ke Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China; Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Hong-Zhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
9
|
Ma C, Liu F, Hu B, Wei M, Zhao J, Zhang H. Quantitative analysis of lead sources in wheat tissue and grain under different lead atmospheric deposition areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36710-36719. [PMID: 31741275 DOI: 10.1007/s11356-019-06825-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Due to rapid growth of industrialization and human activities, such as mining and smelting, lead (Pb) has become a major environmental contaminant. As Pb can pose risks to human health, preventing Pb pollution in wheat is important for food safety, requiring accurate verification of pollution sources. Pb concentrations and isotope ratio levels in soil, in the atmosphere, and wheat tissue (root, stem, leaf, grain) in an area of high-Pb deposition (in the vicinity of a Pb smelter in Jiyuan city) and an area of low deposition (the northwest suburb of Zhengzhou city) were examined. The Pb isotope ratio and the binary mixed model were used to quantify the contribution of soil and atmospheric deposition to Pb content in wheat tissues. Results show that Pb content in soil, atmospheric deposition, and wheat in the high deposition area were significantly higher than those in the low deposition area. Pb content in soil, atmospheric deposition, wheat roots, stems, leaves, and grains in the high-deposition area were 355.32 ± 14.78, 5477.90 ± 187.85, 158.72 ± 9.56, 21.36 ± 1.72, 26.49 ± 1.96, and 0.94 ± 0.02 mg kg-1, respectively. Pb content in the low-deposition area were 6.10 ± 0.75, 78.50 ± 4.35, 2.47 ± 0.23, 1.03 ± 0.07, 2.11 ± 0.13, and 0.08 ± 0.01 mg kg-1, respectively. The Pb isotope ratio recorded obvious differences between soil and atmospheric deposition in the two areas. Combined with the significant correlation between Pb isotopes in various tissues of wheat and environmental media, and analysis of the isotopic composition characteristics of wheat and environmental media, in the high-deposition area, the contribution rate of atmospheric deposition in wheat roots, stems, leaves, and grains was 14%, 66%, 84%, and 77%, respectively. And the soil contribution rate was 86%, 34%, 16%, 23%, respectively. In the low-deposition area, the contribution rate of atmospheric deposition in wheat roots, stems, leaves, and grains was 49%, 73%, 93%, and 83%, respectively. And the soil contribution rates were 51%, 27%, 7%, and 17%, respectively. In the low-Pb deposition area, the contribution rate of atmospheric deposition in wheat was higher than that in the high-deposition area. Atmospheric deposition was the main source of Pb in grains, leaves, and stems of wheat in different depositional areas. Pb in wheat roots mainly derives from soil, and the Pb contribution rate of soil to wheat roots in the high-deposition area was significantly higher than that in the low-deposition area.
Collapse
Affiliation(s)
- Chuang Ma
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China.
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China.
| | - Fuyong Liu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Bin Hu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
| | - Mingbao Wei
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, People's Republic of China
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jihong Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
10
|
Ma C, Liu F, Jin K, Hu B, Wei M, Zhao J, Zhang H, Zhang K. Effects of Atmospheric Fallout on Lead Contamination of Wheat Tissues Based on Stable Isotope Ratios. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 103:676-682. [PMID: 31471656 DOI: 10.1007/s00128-019-02702-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
In order to trace the source of Pb pollution in wheat, the contribution ratio of soil and atmospheric fallout source was quantified based on stable isotope ratios. Results showed that the average Pb content of soil was significantly lower than that of fallout, and Pb in the fallout had a higher weak acid fraction than soil. Pb in wheat had a distinct distribution in its tissues and the content of Pb in wheat roots was significantly higher than it in shoots. The 206Pb/207Pb ratio of soil was significantly higher than that in atmospheric fallout (p < 0.05). According to a binary mixing model, the 206Pb/207Pb ratio in wheat roots, leaves, and grains reflect 67%, 65%, and 90% of Pb content contributions from fallout, respectively. This results suggest that fallout Pb was absorbed by wheat leaves and transferred to other organs, and it is important to develop effective strategies to control fallout Pb risks.
Collapse
Affiliation(s)
- Chuang Ma
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China.
| | - Fuyong Liu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Kai Jin
- Mechanical and Electrical Engineering Institute, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Bin Hu
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Mingbao Wei
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jihong Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Ke Zhang
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|