1
|
Shen T, Jin R, Yan J, Cheng X, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Penttinen P, Ma M, Li S, Zou T, Yu X. Study on diversity, nitrogen-fixing capacity, and heavy metal tolerance of culturable Pongamia pinnata rhizobia in the vanadium-titanium magnetite tailings. Front Microbiol 2023; 14:1078333. [PMID: 37405163 PMCID: PMC10315665 DOI: 10.3389/fmicb.2023.1078333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction The diversity, nitrogen-fixing capacity and heavy metal tolerance of culturable rhizobia in symbiotic relationship with Pongamia pinnata surviving in vanadium (V) - titanium (Ti) magnetite (VTM) tailings is still unknown, and the rhizobia isolates from the extreme barren VTM tailings contaminated with a variety of metals would provide available rhizobia resources for bioremediation. Methods P. pinnata plants were cultivated in pots containing the VTM tailings until root nodules formed, and then culturable rhizobia were isolated from root nodules. The diversity, nitrogen-fixing capacity and heavy metal tolerance of rhizobia were performed. Results Among 57 rhizobia isolated from these nodules, only twenty strains showed different levels of tolerance to copper (Cu), nickel (Ni), manganese (Mn) and zinc (Zn), especially strains PP1 and PP76 showing high tolerance against these four heavy metals. Based on the phylogenetic analysis of 16S rRNA and four house-keeping genes (atpD, recA, rpoB, glnII), twelve isolates were identified as Bradyrhizobium pachyrhizi, four as Ochrobactrum anthropic, three as Rhizobium selenitireducens and one as Rhizobium pisi. Some rhizobia isolates showed a high nitrogen-fixing capacity and promoted P. pinnata growth by increasing nitrogen content by 10%-145% in aboveground plant part and 13%-79% in the root. R. pachyrhizi PP1 showed the strongest capacity of nitrogen fixation, plant growth promotion and resistance to heavy metals, which provided effective rhizobia strains for bioremediation of VTM tailings or other contaminated soils. This study demonstrated that there are at least three genera of culturable rhizobia in symbiosis with P. pinnata in VTM tailings. Discussion Abundant culturable rhizobia with the capacity of nitrogen fixation, plant growth promotion and resistance to heavy metals survived in VTM tailings, indicating more valuable functional microbes could be isolated from extreme soil environments such as VTM tailings.
Collapse
Affiliation(s)
- Tian Shen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ruimin Jin
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jing Yan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiran Cheng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ting Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| |
Collapse
|
2
|
Al-Lami MK, Oustriere N, Gonzales E, Burken JG. Phytomanagement of Pb/Zn/Cu tailings using biosolids-biochar or -humus combinations: Enhancement of bioenergy crop production, substrate functionality, and ecosystem services. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155676. [PMID: 35523335 DOI: 10.1016/j.scitotenv.2022.155676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 05/22/2023]
Abstract
The extreme characteristics of mine tailings generally prohibit microbial processes and natural plant growth. Consequently, vast and numerous tailings sites remain barren for decades and highly susceptible to windblown dust and water erosion. Amendment-assisted phytostabilization is a cost-effective and ecologically productive approach to mitigate the potential transport of residual metals. Due to the contrasting and complementary characteristics of biosolids (BS) and biochar (BC), co-application might be more efficient than individually applied. Studies considering BS and BC co-application for multi-metal tailings revegetation are scarce. As tailings revegetation is a multidimensional issue, clearly notable demand exists for a study that provides a comprehensive understanding on the co-application impact on interrelated properties of physicochemical, biological, mineral nitrogen availability, metal immobilization, water-soil interactions, and impacts on plant cultivation and biomass production. This 8-month greenhouse study aimed at investigating the efficacy of co-application strategies targeting BS and carbon-rich amendments (BC or humic substances (HS)) to phytomanage a slightly alkaline Pb/Zn/Cu tailings with bioenergy crops (poplar, willow, and miscanthus). A complementary assessment linking revegetation effectiveness to ecosystem services (ES) provision was also included. Owing to their rich nutrient and organic matter contents, BS had the most pronounced influence on most of the measured properties including physicochemical, enzyme activities, NH4+-N and NO3--N availability, immobilization of Zn, Cu, and Cd, and biomass production. Co-applying with BC exhibited efficient nutrient release and was more effective than BS alone in reducing metal bioavailability and uptake particularly Pb. Poplar and willow exhibited more superior phytostabilization efficiency compared to miscanthus which caused acidification-induced metal mobilization, yet BC and BS co-application was effective in ameliorating this effect. Enhancement of ES and substrate quality index mirrored the positive effect of amendment co-application and plant cultivation. Co-applying HS with BS resulted in improved nutrient cycling while BC enhanced water purification and contamination control services.
Collapse
Affiliation(s)
- Mariam K Al-Lami
- Department of Civil, Architectural and Environmental Engineering, Missouri Univ. of Science and Technology, Rolla, MO 65409, United States of America.
| | - Nadège Oustriere
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France; JUNIA, Health & Environment, Team Environment, F-59000 Lille, France
| | - Eva Gonzales
- Department of Biology, Saint Louis Univ., Saint Louis, MO 63103, United States of America.
| | - Joel G Burken
- Department of Civil, Architectural and Environmental Engineering, Missouri Univ. of Science and Technology, Rolla, MO 65409, United States of America.
| |
Collapse
|
3
|
Luo Y, Liu F, Ren J, Zhu J, Luo X, Xiang Y. Effects of dominant plant growth on the nutrient composition and bacterial community structure of manganese residues. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:525-535. [PMID: 34382471 DOI: 10.1080/15226514.2021.1957769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The rhizospheres of three dominant plant species (Miscanthus floridulus, Buddleja lindleyana, and Erigeron annuus) growing in manganese residue disposal sites in eastern Guizhou Province, China, were analyzed to study the effects of plant growth on the nutrient levels and bacterial community structure of two types of manganese residues. The results showed that the growth of the three species improved the nutritional composition of manganese residues; the available nitrogen (AN) contents of the manganese mine residue significantly increased by 29.56-60.78% while the available phosphorus (AP) contents of the electrolytic manganese residue significantly increased by 30.24-44.41% compared to those in unvegetated manganese residue. The diversity of the bacterial community in the manganese mine residue increased significantly due to plant growth. Proteobacteria, Acidobacteria, and Bacteroidetes were the dominant phyla in both manganese residues. Sphingomonas and GP6 were the dominant bacterial genera. The relative abundance of the Firmicutes phylum was significantly higher in the manganese mine residue than in the control and that of the Thiobacillus genus was lower, which indicated improvements in the microenvironment. Correlation analysis showed that OM and AN were the main nutrient factors affecting the bacterial community structure in the manganese mine residue.Novelty statement At present, research on the phytoremediation of manganese residue disposal sites focuses mostly on the investigation of different plant types and their heavy metal accumulation and transformation characteristics. However, comparative studies of the differences in growth matrix characteristics between plant growth areas and exposed areas are lacking. In addition, dominant plant species are regionally distributed. The previous studies were mostly concentrated in Chongqing, Guangxi, and Hunan in China. The eastern region of Guizhou Province is located in the "Manganese Triangle" area of China, where the manganese resources account for about 50% of the national total. There is no report on the phytoremediation of manganese residue disposal sites in this region. Therefore, the rhizospheres of three dominant plant species (Miscanthus floridulus, Buddleja lindleyana, and Erigeron annuus) growing in manganese residue disposal sites in eastern Guizhou Province, China, were analyzed to study the effects of plant growth on the nutrient levels and bacterial community structure of two types of manganese residues (manganese mine residue and electrolytic manganese residue). This study could provide useful theoretical information to benefit the ecological restoration of manganese residue disposal sites.
Collapse
Affiliation(s)
- Yang Luo
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
- School of Geography and Resources, Guizhou Education University, Guiyang, China
| | - Fang Liu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
| | - Jun Ren
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
- School of Geography and Resources, Guizhou Education University, Guiyang, China
| | - Jian Zhu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
| | - Xuqiang Luo
- School of Geography and Resources, Guizhou Education University, Guiyang, China
| | - Yangzhou Xiang
- School of Geography and Resources, Guizhou Education University, Guiyang, China
| |
Collapse
|