1
|
Manuguerra S, Carli F, Scoditti E, Santulli A, Gastaldelli A, Messina CM. Effects of Mixtures of Emerging Pollutants and Drugs on Modulation of Biomarkers Related to Toxicity, Oxidative Stress, and Cancer. Metabolites 2024; 14:559. [PMID: 39452940 PMCID: PMC11509268 DOI: 10.3390/metabo14100559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Background/Objectives: Over time, the scientific community has developed a growing interest in the effects of mixtures of different compounds, for which there is currently no established evidence or knowledge, in relation to certain categories of xenobiotics. It is well known that exposure to pollutants causes oxidative stress, resulting in the overproduction of reactive oxygen species (ROS), which can affect signaling pathways that regulate the cell cycle, apoptosis, energy balance, and cellular metabolism. The aim of this study was to investigate the effects of sub-lethal concentrations of mixtures of emerging pollutants and pharmaceuticals on the modulation of biomarkers related to toxicity, oxidative stress, and cancer. Methods: In this study, the hepatoma cell line HepG2 was exposed to increasing concentrations of polybrominated diphenyl ether 47 (BDE-47), cadmium chloride (CdCl2), and carbamazepine (CBZ), both individually and in mixtures, for 72 h to assess cytotoxicity using the MTT assay. The subsequent step, following the identification of the sub-lethal concentration, was to investigate the effects of exposure at the gene expression level, through the evaluation of molecular markers related to cell cycle and apoptosis (p53), oxidative stress (NRF2), conjugation and detoxification of xenobiotics (CYP2C9 and GST), DNA damage (RAD51 and γH2AFX), and SUMOylation processes (SUMO1 and UBC9) in order to identify any potential alterations in pathways that are normally activated at the cellular level. Results: The results showed that contaminants tend to affect the enzymatic detoxification and antioxidant system, influencing DNA repair defense mechanisms involved in resistance to oxidative stress. The combined effect of the compounds at sub-lethal doses results in a greater activation of these pathways compared to exposure to each compound alone, thereby exacerbating their cytotoxicity. Conclusions: The biomarkers analyzed could contribute to the definition of early warning markers useful for environmental monitoring, while simultaneously providing insight into the toxicity and hazard levels of these substances in the environment and associated health risks.
Collapse
Affiliation(s)
- Simona Manuguerra
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (S.M.); (A.S.)
| | - Fabrizia Carli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Egeria Scoditti
- Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy;
| | - Andrea Santulli
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (S.M.); (A.S.)
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | - Concetta Maria Messina
- Laboratory of Marine Biochemistry and Ecotoxicology, Department of Earth and Marine Sciences DiSTeM, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; (S.M.); (A.S.)
| |
Collapse
|
2
|
Wang Z, Pu D, Zheng J, Li P, Lü H, Wei X, Li M, Li D, Gao L. Hypoxia-induced physiological responses in fish: From organism to tissue to molecular levels. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115609. [PMID: 39492173 DOI: 10.1016/j.ecoenv.2023.115609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 11/05/2024]
Abstract
Dissolved oxygen (DO) in water bodies is a prerequisite for fish survival and plays a crucial role in fish growth, development, and physiological processes. However, with increasing eutrophication, greenhouse effects, and extreme weather conditions, DO levels in aquatic environments often become lower than normal. This leads to stress in fish, causing them to exhibit escape behavior, inhibits their growth and development, and causes tissue damage. Moreover, oxidative stress, decreased immune function, and altered metabolism have been observed. Severe hypoxia can cause massive fish mortality, resulting in significant economic losses to the aquaculture industry. In response to hypoxia, fish exhibit a series of behavioral and physiological changes that are self-protective mechanisms formed through long-term evolution. This review summarizes the effects of hypoxic stress on fish, including the asphyxiation point, behavior, growth and reproduction, tissue structure, physiological and biochemical processes, and regulation of gene expression. Furthermore, future research directions are discussed to provide new insights and references.
Collapse
Affiliation(s)
- Zhengxi Wang
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Decheng Pu
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Jishu Zheng
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Peiyuan Li
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Hongjian Lü
- Research Center of Fishery Resources and Environment, Conservation and Research Center for Aquatic Biodiversity in the Upper Reaches of Yangtze River Ministry of Agriculture and Rural Affairs, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Xiuli Wei
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Mai Li
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Dongsheng Li
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China
| | - Lihong Gao
- Key Laboratory of Smart Agricultural Technology in the Southwest Mountains, Ministry of Agriculture and Rural Affairs (Co-construction by Ministry and Province), Chongqing Academy of Agricultural Sciences, Chongqing 400715, China.
| |
Collapse
|
3
|
Han L, Wang Q. Association between brominated flame retardants exposure and markers of oxidative stress in US adults: An analysis based on the National Health and Nutrition Examination Survey 2007-2016. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115253. [PMID: 37478566 DOI: 10.1016/j.ecoenv.2023.115253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023]
Abstract
We aimed to investigate the relationship between oxidative stress indicators and brominated flame retardant (BFR) levels in US adults. Using data from the NHANES (National Health and Nutrition Examination Survey) from 2007 to 2016, 8028 participants aged 18 and over were enrolled in this study. PBDE28, PBDE47, PBDE85, PBDE99, PBDE100, PBDE153, PBDE154, PBDE209, and PBB153, with over 75 % detection rates, were extracted in this study. Survey-weighted linear regression model, weighted quantile sum (WQS) model, and quantile-based g calculation (QGC) model were used to assess the correlation between serum BFRs levels and oxidative stress indicators (serum bilirubin and gamma-glutamyl transferase [GGT]). Besides, the nonlinear association was explored using restricted cubic splines (RCS). Each of the BFRs was confirmed by the survey-weighted linear regression model to be positively associated with GGT after controlling for variables, and BFRs except for PBDE153 were positively associated with serum bilirubin. Except for PBDE153, serum bilirubin in the highest quartile of BFRs was significantly higher than in the lowest high quartile. Additionally, except for PBDE85, serum GGT in the highest quartile of BFRs was higher than in the lowest high quartile. A significant nonlinear association between all BFRs with bilirubin and the PBDE153, PBDE209, and PBB153 with GGT was identified by RCS analysis. By WQS analysis, combined BFR exposure was associated with serum GGT (β: 0.093; 95 % CI = 0.066-0.121; P < 0.0001) and bilirubin (β: 0.090; 95 % CI = 0.068-0.113; P < 0.0001). QGC analysis found a similar correlation between BFR mixtures with serum GGT (β: 0.098; 95 % CI = 0.075-0.120; P < 0.0001) and bilirubin (β: 0.073; 95 % CI = 0.048-0.097; P < 0.0001). Exposure to BFRs is positively associated with markers of oxidative stress (serum bilirubin and GGT) in US adults, which needs further exploration by a large-scale cohort study.
Collapse
Affiliation(s)
- Lu Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qi Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
4
|
Messina CM, Manuguerra S, Arena R, Espinosa-Ruiz C, Curcuraci E, Esteban MA, Santulli A. Contaminant-induced oxidative stress underlies biochemical, molecular and fatty acid profile changes, in gilthead seabream (Sparus aurata L.). Res Vet Sci 2023; 159:244-251. [PMID: 37178628 DOI: 10.1016/j.rvsc.2023.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Chemical contaminants such as heavy metals, polybrominated diphenyl ethers (PBDEs) and drugs, are constantly found in the marine environment determining the interest of the scientific community for their side effects on animal welfare, food safety and security. Few studies have analyzed the effects of mix of contaminants in fish, in terms of molecular and nutritional composition response, beside it is indispensable to think more and more on effect of contaminants along the food web system. In this study, Sparus aurata specimens were exposed for 15 days, by diet, to a mixture of carbamazepine (Cbz), polybrominated diphenyl ether-47 (PBDE-47) and cadmium chloride (CdCl2), at two doses (0.375 μg g-1 D1; 37.5 μg g-1 D2) (T15). After, fish were fed with a control diet, without contaminants mix, for other 15 days (T30). The study explored the effect on oxidative stress in the liver, analyzing specific molecular markers and effects on quality, by fatty acid profile and lipid peroxidation. Molecular markers involved in ROS scavenging, such as superoxide dismutase (sod), catalase (cat) and glutathione peroxidase (gpx) were evaluated by gene expression; as markers of quality and lipid peroxidation, the fatty acids (FAs) profile and the level of malondyaldeide (MDA) were assessed. Sod and cat genes underwent to up-regulation after 15 days of diet containing contaminants and showed down-regulation after the next 2 weeks of detoxification (T30). At T15, the FAs profile showed an increase of the saturated fatty acids (SFA), and a decrease of the polyunsatured fatty acids (PUFA). The MDA levels increased over time, indicating an ongoing radical damage. These results suggest that the effects of the contaminants can be perceived not only at molecular but also at nutritional level and that the molecular and biochemical markers adopted could be differently used to monitor the health of aquatic organisms in the marine environment.
Collapse
Affiliation(s)
- Concetta Maria Messina
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy.
| | - Simona Manuguerra
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy
| | - Rosaria Arena
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy
| | - Cristobal Espinosa-Ruiz
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Eleonora Curcuraci
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy
| | - María Angeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain
| | - Andrea Santulli
- Department of Earth and Marine Sciences DiSTeM, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via G. Barlotta 4, 91100 Trapani, Italy; Istituto di Biologia Marina, Consorzio Universitario della Provincia di Trapani, Via G. Barlotta 4, 91100 Trapani, Italy
| |
Collapse
|
5
|
Dias M, Paula JR, Pousão-Ferreira P, Casal S, Cruz R, Cunha SC, Rosa R, Marques A, Anacleto P, Maulvault AL. Combined effects of climate change and BDE-209 dietary exposure on the behavioural response of the white seabream, Diplodus sargus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163400. [PMID: 37054799 DOI: 10.1016/j.scitotenv.2023.163400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Decabromodiphenyl-ether (BDE-209) is a persistent organic pollutant ubiquitously found in marine environments worldwide. Even though this emerging chemical contaminant is described as highly toxic, bioaccumulative and biomagnifiable, limited studies have addressed the ecotoxicological implications associated with its exposure in non-target marine organisms, particularly from a behavioural standpoint. Alongside, seawater acidification and warming have been intensifying their impacts on marine ecosystems over the years, compromising species welfare and survival. BDE-209 exposure as well as seawater acidification and warming are known to affect fish behaviour, but information regarding their interactive effects is not available. In this study, long-term effects of BDE-209 contamination, seawater acidification and warming were studied on different behavioural traits of Diplodus sargus juveniles. Our results showed that D. sargus exhibited a marked sensitivity in all the behaviour responses after dietary exposure to BDE-209. Fish exposed to BDE-209 alone revealed lower awareness of a risky situation, increased activity, less time spent within the shoal, and reversed lateralization when compared to fish from the Control treatment. However, when acidification and/or warming were added to the equation, behavioural patterns were overall altered. Fish exposed to acidification alone exhibited increased anxiety, being less active, spending more time within the shoal, while presenting a reversed lateralization. Finally, fish exposed to warming alone were more anxious and spent more time within the shoal compared to those of the Control treatment. These novel findings not only confirm the neurotoxicological attributes of brominated flame retardants (like BDE-209), but also highlight the relevance of accounting for the effects of abiotic variables (e.g. pH and seawater temperature) when investigating the impacts of environmental contaminants on marine life.
Collapse
Affiliation(s)
- Marta Dias
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - José Ricardo Paula
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Pousão-Ferreira
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| | - Susana Casal
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rebeca Cruz
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - António Marques
- IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Patrícia Anacleto
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Ana Luísa Maulvault
- UCIBIO - Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, Caparica, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Infrastructure Network Associated Laboratory, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939 2750-374 Cascais, Portugal; IPMA, I.P., Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| |
Collapse
|
6
|
Maria B, Maria MC, Antonio B, Simona M, Rosaria A, Andrea S, Giulia M, Marianna DC, Mario S. Chemical and biochemical responses to sub-lethal doses of mercury and cadmium in gilthead seabream (Sparus aurata). CHEMOSPHERE 2022; 307:135822. [PMID: 35963385 DOI: 10.1016/j.chemosphere.2022.135822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Specimens of Sparus aurata were exposed to sub-lethal concentrations of Hg and Cd for 25 days and the levels of both metals were investigated in organs and tissues. Bioaccumulation of Hg decreased as follow: gills > kidney > liver > skin > muscle, while the order of Cd bioaccumulation was: liver > kidney > gills > skin > muscle. Immediately after exposure, both metals showed the highest bioaccumulation in gills and skin indicating that these organs are reliable targets for biomonitoring studies after short term exposure. Metals introduction caused a significant time-dependent concentrations increase in kidney and liver, while in the muscle a significant increase of Hg was recorded only at the end of the experimentation. The effects of exposure were also investigated, at biochemical level, in the liver, which represents the main target of xenobiotics biotransformation and metabolism in fish. Exposed fishes exhibited a reduction of total lipid level, a decrease of polyunsaturated fatty acids (PUFA), together with a MDA increase. This suggests a direct effect of contaminants on oxidative stress induction that, through the MDA increase, altered the membrane fatty acids composition decreasing the PUFA content. As it regards molecular markers related to oxidative stress and lipid metanolism, a significant increase of Nrf2, Hif-1α and Ampk and a decrease of Fas were observed after exposure to both metals, while an Nf-kB increase was recorded in specimens exposed to Hg, docuemnting a correlation with oxidative stress and consequent metabolism adaptation. Finally, these results suggest the possibility to adopt these biomarkers to explore fish metabolic responses to environmental pollution.
Collapse
Affiliation(s)
- Bonsignore Maria
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare, 3 Campobello di Mazara, Italy
| | - Messina Concetta Maria
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare, 3 Campobello di Mazara, Italy; University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Bellante Antonio
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare, 3 Campobello di Mazara, Italy.
| | - Manuguerra Simona
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Arena Rosaria
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Santulli Andrea
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Maricchiolo Giulia
- National Research Council of Italy, Institute of Biological Resources and Marine Biotechnologies (IRBIM-CNR), Spianata S. Raineri 86, 98122, Messina, Italy
| | - Del Core Marianna
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare, 3 Campobello di Mazara, Italy
| | - Sprovieri Mario
- National Research Council of Italy - Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), via del Mare, 3 Campobello di Mazara, Italy
| |
Collapse
|
7
|
Pérez-Iglesias JM, González P, Calderón MR, Natale GS, Almeida CA. Comprehensive evaluation of the toxicity of the flame retardant (decabromodiphenyl ether) in a bioindicator fish (Gambusia affinis). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50845-50855. [PMID: 35243576 DOI: 10.1007/s11356-022-19462-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
In recent years, concerns have increased about the adverse effects on health and the environment of polybrominated diphenyl ethers (PBDEs), especially BDE-209, the most widely PBDE used globally. These pollutants derive from e-waste and present different adverse effects on biota. In this work, a toxicological study on mosquitofish (Gambusia affinis) using BDE-209 (2,2',3,3',4,4',5,'5',6,6'-decabromodiphenyl ether) was carried out. Acute toxicity bioassays were conducted with daily renewal of solutions, using different concentrations of environmental relevance, ranged between 10 and 100 μg L-1 of BDE-209. At 48 and 96 h of exposure, several parameters were evaluated, such as mortality, individual activity (swimming), biochemical activity (catalase; thiobarbituric acid-reactive substances; and acetylcholinesterase), and cytotoxic responses (micronucleus frequencies). In addition, integrated biomarker response and multivariate analyses were conducted to study the correlation of biomarkers. The calculated Lethal Concentration-50 remained constant after all exposure times (24 to 96 h), being the corresponding value 27.79 μg L-1 BDE-209. Furthermore, BDE-209 induced effects on the swimming activity of this species in relation to acetylcholine, since BDE-209 increased, producing oxidative damage at the biochemical level and genotoxicity after 48 h of exposure to 10 and 25 μg L-1 BDE-209. The results indicate that BDE-209 has biochemical, cytotoxic, neurotoxic, and genotoxic potential on G. affinis. In addition, mosquitofish could be used as a good laboratory model to evaluate environmental stressors since they could represent a risk factor for Neotropical species.
Collapse
Affiliation(s)
- Juan Manuel Pérez-Iglesias
- Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Química, Bioquímica Y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Chacabuco 917, 1º Piso Oficina 8- C.P. (D5700BWS), Juan Martín de Pueyrredón, San Luis, Argentina
| | - Patricia González
- Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Química, Bioquímica Y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Chacabuco 917, 1º Piso Oficina 8- C.P. (D5700BWS), Juan Martín de Pueyrredón, San Luis, Argentina
| | - Mirian Roxana Calderón
- Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Química, Bioquímica Y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Chacabuco 917, 1º Piso Oficina 8- C.P. (D5700BWS), Juan Martín de Pueyrredón, San Luis, Argentina
| | - Guillermo Sebastián Natale
- Centro de Investigaciones del Medioambiente (CIM), CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 115 y 47 (CP 1900), La Plata, Argentina
| | - César Américo Almeida
- Instituto de Química de San Luis (INQUISAL), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Química, Bioquímica Y Farmacia (FQByF), Universidad Nacional de San Luis (UNSL), Chacabuco 917, 1º Piso Oficina 8- C.P. (D5700BWS), Juan Martín de Pueyrredón, San Luis, Argentina.
| |
Collapse
|
8
|
Ben Ameur W, El Megdiche Y, Ennaceur S, Mhadhbi T, Ben Hassine S, Annabi A, de Lapuente J, Driss MR, Borràs M, Eljarrat E. Biomarkers responses and polybrominated diphenyl ethers and their methoxylated analogs measured in Sparus aurata from the Lagoon of Bizerte, Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38618-38632. [PMID: 35083694 DOI: 10.1007/s11356-022-18769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to the examination of the levels and effects of organobromine compounds (polybrominated diphenyl ethers: PBDEs and methoxylated brominated diphenyl ethers: MeO-PBDEs), in Sparus aurata native to the Lagoon of Bizerte. For that, different biomarkers of exposure (somatic indices, superoxide dismutase, and catalase activities) and effect (malondialdehyde level, histopathologic alterations, and DNA damage) as well as pollutant levels were measured in specimens collected from this impacted ecosystem and the Mediterranean Sea as a reference site. Bizerte Lagoon PBDE fish levels were higher than the Mediterranean Sea, whereas MeO-PBDEs were higher in the reference site. Fish from Bizerte Lagoon presented a higher hepatosomatic index, lower catalase and superoxide dismutase activity, higher level of malondialdehyde, and higher percentage of DNA tail in comparison to fish from the reference area. The histological study of the liver indicated substantial lesions in fish from the polluted site. The results showed strong positive correlations between the concentrations of the PBDE or MeO-PBDE and the MDA and DNA tail % levels and negative correlations for the activities of enzymes of SOD and CAT. Consequently, these findings could suggest a potential link between exposure to these pollutants and the observed biomarker responses in the Bizerte Lagoon seabream. Taken together, these results highlight the importance of biomarker selection and the selected sentinel fish species as useful tools for biomonitoring of aquatic pollution.
Collapse
Affiliation(s)
- Walid Ben Ameur
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia.
- Ecologie de La Faune Terrestre UR17ES44, Département Des Sciences de La Vie, Faculté Des Sciences de Gabès, Université de Gabès, Gabes, Tunisia.
| | - Yassine El Megdiche
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Soukaina Ennaceur
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Jeddah, Saudi Arabia
| | - Takoua Mhadhbi
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Sihem Ben Hassine
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Ali Annabi
- Ecologie de La Faune Terrestre UR17ES44, Département Des Sciences de La Vie, Faculté Des Sciences de Gabès, Université de Gabès, Gabes, Tunisia
| | - Joaquin de Lapuente
- Unit of Experimental Toxicology and Ecotoxicology, UTOX-PCB, Parc Científic Barcelona, Barcelona, Spain
| | - Mohamed Ridha Driss
- Laboratory of Heteroatom Organic Chemistry, Department of Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021, Jarzouna, Tunisia
| | - Miquel Borràs
- Unit of Experimental Toxicology and Ecotoxicology, UTOX-PCB, Parc Científic Barcelona, Barcelona, Spain
| | - Ethel Eljarrat
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
9
|
Espinosa-Ruiz C, Manuguerra S, Morghese M, García-Beltrán JM, Esteban MÁ, Giuga M, Messina CM, Santulli A. Immunity and inflammatory responses in gilthead sea bream (Sparus aurata L.) exposed to sub-lethal mixture of carbamazepine, cadmium chloride and polybrominated diphenyl ether. FISH & SHELLFISH IMMUNOLOGY 2021; 111:25-35. [PMID: 33359412 DOI: 10.1016/j.fsi.2020.12.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Chemical contaminants such as industrial and urban by-products, pharmaceuticals, drugs metabolites and, plastics, are continuously found in the oceans, affecting its quality and organism's welfare. Although these compounds are found at concentrations ranged ng L-1, there is an increasing concern about the potential adverse effects of the interactions among those substances present, simultaneously, in a mixture. In the present study, specimens of sea bream (Sparus aurata) were exposed, by food, to rising concentrations of a mixture of carbamazepine, polybrominated diphenyl ether-47 and cadmium chloride, for 15 days and then, maintained, with the same control diet, without contaminants, for other 15 days. Samples of skin mucus, serum, head-kidney, liver and intestine were sampled at 0, 15 and 30 days. Cellular immune parameters were evaluated on head-kidney, as well as humoral parameters were determined on skin mucus and serum. In addition, the expression of some genes, related to immunity, was analysed on liver and intestine. Both cellular and humoral response were affected at 15 days, showing slightly signs of recovery at 30 days. Besides, the expression of immune-related genes was highly affected, suggesting the development of inflammatory processes, as well as a reduction of immune parameters. Overall, the mixture of compounds severally affected the immune system of sea bream, suggesting a lower degree of recovery. The prolonged exposure to a mixture of these compounds could entail serious change on population immunity and, eventually, promote changes on marine biota.
Collapse
Affiliation(s)
- Cristóbal Espinosa-Ruiz
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Simona Manuguerra
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Maria Morghese
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - José María García-Beltrán
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - María Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Marta Giuga
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy; Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS), Consiglio Nazionale delle Ricerche, Capo Granitola, Trapani, Italy; University of Catania, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Sezione di Scienze della Terra, Corso 57, 95129, Catania, Italy
| | - Concetta M Messina
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy; Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS), Consiglio Nazionale delle Ricerche, Capo Granitola, Trapani, Italy.
| | - Andrea Santulli
- University of Palermo, Dept. of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy; Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino (IAS), Consiglio Nazionale delle Ricerche, Capo Granitola, Trapani, Italy; Consorzio Universitario della Provincia di Trapani, Marine Biology Institute, Via Barlotta 4, 91100, Trapani, Italy
| |
Collapse
|
10
|
Espinosa Ruiz C, Manuguerra S, Cuesta A, Esteban MA, Santulli A, Messina CM. Sub-lethal doses of polybrominated diphenyl ethers affect some biomarkers involved in energy balance and cell cycle, via oxidative stress in the marine fish cell line SAF-1. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:1-10. [PMID: 30797971 DOI: 10.1016/j.aquatox.2019.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of persistent contaminants which are found all over the world in the marine environment. Sparus aurata fibroblast cell line (SAF-1) was exposed to increasing concentrations of PBDEs 47 and 99, until 72 h to evaluate the cytotoxicity, reactive oxygen species (ROS) production and the expression of some selected molecular markers related to cell cycle, cell signaling, energetic balance and oxidative stress (p53, erk-1, hif-1α and nrf-2), by real-time PCR. Furthermore, SAF-1 cells were exposed for 7 and 15 days to sub-lethal concentrations, in order to evaluate the response of some biomarkers by immunoblotting (p53, ERK-1, AMPK, HIF-1α and NRF-2). After 48 and 72 h, the cells showed a significant decrease of cell vitality as well as an increase of intracellular ROS production. Gene expression analysis showed that sub-lethal concentrations of BDE-99 and 47, after 72 h, up-regulated cell cycle and oxidative stress biomarkers, although exposure to 100 μmol L-1 down-regulated the selected markers related to cell cycle, cell signaling, energetic balance. After 7 and 15 days of sub-lethal doses exposure, all the analyzed markers resulted affected by the contaminants. Our results suggest that PBDEs influence the cells homeostasis first of all via oxidative stress, reducing the cell response and defense capacity and affecting its energetic levels. This situation of stress and energy imbalance could represents a condition that, modifying some of the analyzed biochemical pathways, would predispose to cellular transformation.
Collapse
Affiliation(s)
- Cristobal Espinosa Ruiz
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Simona Manuguerra
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Maria Angeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Andrea Santulli
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy; Consorzio Universitario della Provincia di Trapani, Marine Biology Institute, Via Barlotta 4, 91100, Trapani, Italy
| | - Concetta M Messina
- University of Palermo, Dept of Earth and Marine Science DISTEM, Laboratory of Marine Biochemistry and Ecotoxicology, Via Barlotta 4, 91100, Trapani, Italy.
| |
Collapse
|
11
|
Manuguerra S, Espinosa Ruiz C, Santulli A, Messina CM. Sub-lethal Doses of Polybrominated Diphenyl Ethers, in Vitro, Promote Oxidative Stress and Modulate Molecular Markers Related to Cell Cycle, Antioxidant Balance and Cellular Energy Management. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16040588. [PMID: 30781636 PMCID: PMC6406823 DOI: 10.3390/ijerph16040588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/08/2023]
Abstract
In the present study, we evaluated the effects of different concentrations of the polybrominated diphenyl ethers (PBDEs) BDE-209, BDE-47 and BDE-99, on the vitality and oxidative stress of a HS-68 human cell culture exposed to the compounds for three days. The results showed that for this exposure time, only the highest concentrations produced a significant vitality reduction and oxidative stress induction (p < 0.05), measured as reactive oxygen species (ROS). Subsequently, in order to verify the effects of sub-lethal doses, cells were exposed for a longer time and data collected, after 12 and 20 days, to study ROS production and some molecular markers related to cell cycle and stress (p53, pRB, PARP, c-Jun and c-Fos), antioxidant status and proliferation (ERK, c-Jun and c-Fos), energy balance (NRF2, AMPK, HIF). Most of the biomarkers were influenced by the treatments, indicating that sub-lethal doses of PBDEs, for longer time, can enhance the production of ROS, altering the energetic metabolism, cell cycle and antioxidant balance, determining possible negative effects on the cell proliferation equilibrium.
Collapse
Affiliation(s)
- Simona Manuguerra
- Department of Earth and Sea Science, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy.
| | - Cristóbal Espinosa Ruiz
- Department of Earth and Sea Science, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy.
| | - Andrea Santulli
- Department of Earth and Sea Science, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy.
- Marine Biology Institute, Consorzio Universitario della Provincia di Trapani, Via Barlotta 4, 91100 Trapani, Italy.
| | - Concetta Maria Messina
- Department of Earth and Sea Science, Laboratory of Marine Biochemistry and Ecotoxicology, University of Palermo, Via Barlotta 4, 91100 Trapani, Italy.
| |
Collapse
|