1
|
Elleuch J, Drira M, Ghribi I, Hadjkacem F, Pierre G, Khemakhem H, Michaud P, Fendri I, Abdelkafi S. Lead removal from the aqueous solution by extracellular polymeric substances produced by the marine diatom Navicula salinicola. ENVIRONMENTAL TECHNOLOGY 2025; 46:46-58. [PMID: 38619982 DOI: 10.1080/09593330.2024.2338456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/27/2024] [Indexed: 04/17/2024]
Abstract
Microbial extracellular polymeric substances (EPS) have recently emerged as significant contributors in diverse biotechnological applications. Extracellular polymeric substances (EPS), produced by a Navicula salinicola strain, have been studied for potential applications in a specific heavy metal (lead (Pb II)) removal from wastewater. The optimisation of operational parameters, mainly pH, Pb and EPS concentrations, using the Box-Behnken design (BBD) was undertaken to enhance lead uptake. The higher Pb adsorption capacity reached 2211.029 mg/g. Hydroxyl, carbonyl, carboxyl, phosphoric, and sulfhydryl groups were identified quantitatively as potential sites for Pb adsorption. EPS exhibited a notable flocculation rate of 70.20% in kaolin clay at a concentration of 15 mg/L. They demonstrated an emulsifying activity greater than 88%, showcasing their versatile potential for both sedimentation processes and stabilising liquid-liquid systems. EPS could be excellent nonconventional renewable biopolymers for treating water and wastewater.
Collapse
Affiliation(s)
- Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia
| | - Marwa Drira
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Imtinen Ghribi
- Laboratory of Plant Biotechnologies Applied to the Improvement of Plants, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Farah Hadjkacem
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia
- CNRS, Clermont Auvergne INP, Institute Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Guillaume Pierre
- CNRS, Clermont Auvergne INP, Institute Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratory of Multifunctional Materials and Applications (LaMMA), (LR16ES18), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | | | - Philippe Michaud
- CNRS, Clermont Auvergne INP, Institute Pascal, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Imen Fendri
- Laboratory of Plant Biotechnologies Applied to the Improvement of Plants, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
2
|
El-Naggar NEA, El-Shall H, Elyamny S, Hamouda RA, Eltarahony M. Novel algae-mediated biosynthesis approach of chitosan nanoparticles using Ulva fasciata extract, process optimization, characterization and their flocculation performance. Int J Biol Macromol 2024; 282:136925. [PMID: 39490479 DOI: 10.1016/j.ijbiomac.2024.136925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Chitosan nanoparticles (CNPs) are promising biopolymeric nanoparticles with excellent physicochemical, antimicrobial, and biological properties. In this investigation, CNPs were produced using Ulva fasciata biomass extract as a reducing agent. The SEM micrograph revealed that the biosynthesized CNPs appeared to be spheres with a mean size of 32.49 nm. The ζ-potential pattern of CNPs has a single peak at +33.1 mV, indicating a positively charged surface. The X-ray diffraction pattern of the biosynthesized CNPs exhibited three different peaks at 2θ = 25.24, 52.96, and 72.28°. The FTIR analysis identifies various functional groups. The thermogravimetric analyses demonstrate that CNPs have high thermal stability. Additionally, the highest biosynthesis of CNPs (8.96 mg CNPs/mL) was obtained via FCCD when the initial pH level was 4, Ulva fasciata extract concentration was 45 %, v/v, and chitosan concentration was 0.9 %. Algae-mediated synthesized CNPs were used as coagulating/flocculating agents. By using the jar test, CNPs exhibited superior flocculation performance compared to commercial coagulants like alum, FeCl3, and chitosan in bulk form. Further, different parameters were screened, and the maximum flocculating activity (FA) recorded was 83.58 ± 0.47 % at 500 mg/L of CNPs, 1-5 % clay suspension at pH and temperature ranges of 6-8 and 10-80 °C, respectively. CNPs displayed eminent performance in water clarification.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt.
| | - Hadeel El-Shall
- Environmental biotechnology department, Genetic engineering and biotechnology research institute (GEBRI), City of scientific research and technological applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Shaimaa Elyamny
- Electronic Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Ragaa A Hamouda
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt
| | - Marwa Eltarahony
- Environmental biotechnology department, Genetic engineering and biotechnology research institute (GEBRI), City of scientific research and technological applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| |
Collapse
|
3
|
Peng Y, Liu L, Wang X, Teng G, Fu A, Wang Z. Source apportionment based on EEM-PARAFAC combined with microbial tracing model and its implication in complex pollution area, Wujin District, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123596. [PMID: 38369097 DOI: 10.1016/j.envpol.2024.123596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Further improving the quality of surface water is becoming more difficult after the control of main point-sources, especially in the complex pollution area with mixed industrial and agricultural productions, whereas the pollution source apportionment might be the key to quantify different pollution sources and developing some effective measures. In this study, a technical framework for source apportionment based on three-dimensional fluorescence and microbial traceability model is developed. Based on screening of the main environmental factors and their spatiotemporal characteristics, potential pollution sources have been tentatively identified. Then, the pollution sources are further tested based on the analysis of fluorescence excitation-emission matrix (EEM) and the similarity of fluorescence components in surface water and potential pollution sources. At the same time, the correlation between microbial species and pollution sources is constructed by analyzing the spatiotemporal characteristics of microbial composition and the response of main species to environmental factors. Therefore, pollution source apportionment is quantified using PCA-APCS-MLR, Fast Expectation-maximization for Microbial Source Tracking (FEAST), and Bayesian community-wide culture-independent microbial source tracking (SourceTracker). PCA-APCS-MLR could not effectively distinguish the contributions of different industrial sources in the complex environment of this study, and the contribution of unknown sources was high (average 39.60%). In contrast, the microbial traceability model can accurately identify the contribution of 7 pollution sources and natural sources, effectively reduce the proportion of unknown sources (average of FEAST is 19.81%, SourceTracker is 16.72%), and show better pollution identification and distribution capabilities. FEAST exhibits a more sensitive potential in source apportionment and shorter calculation time than SourceTracker, thus might be used to guide the precise regional pollution control, especially in the complex pollution environments.
Collapse
Affiliation(s)
- Yuanjun Peng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lili Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Xu Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Guoliang Teng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Anqing Fu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiping Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Chhiba V, Pillay P, Mtimka S, Moonsamy G, Kwezi L, Pooe OJ, Tsekoa TL. South Africa's indigenous microbial diversity for industrial applications: A review of the current status and opportunities. Heliyon 2023; 9:e16723. [PMID: 37484259 PMCID: PMC10360602 DOI: 10.1016/j.heliyon.2023.e16723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 07/25/2023] Open
Abstract
The unique metagenomic, metaviromic libraries and indigenous micro diversity within Southern Africa have the potential for global beneficiation in academia and industry. Microorganisms that flourish at high temperatures, adverse pH conditions, and high salinity are likely to have enzyme systems that function efficiently under those conditions. These attributes afford researchers and industries alternative approaches that could replace existing chemical processes. Thus, a better understanding of African microbial/genetic diversity is crucial for the development of "greener" industries. A concerted drive to exploit the potential locked in biological resources has been previously seen with companies such as Diversa Incorporated and Verenium (Badische Anilin-und SodaFabrik-BASF) both building business models that pioneered the production of high-performance specialty enzymes for a variety of different industrial applications. The market potential and accompanying industry offerings have not been fully exploited in South Africa, nor in Africa at large. Utilization of the continent's indigenous microbial repositories could create long-lasting, sustainable growth in various production sectors, providing economic growth in resource-poor regions. By bolstering local manufacture of high-value bio-based products, scientific and engineering discoveries have the potential to generate new industries which in turn would provide employment avenues for many skilled and unskilled laborers. The positive implications of this could play a role in altering the face of business markets on the continent from costly import-driven markets to income-generating export markets. This review focuses on identifying microbially diverse areas located in South Africa while providing a profile for all associated microbial/genetically derived libraries in this country. A comprehensive list of all the relevant researchers and potential key players is presented, mapping out existing research networks for the facilitation of collaboration. The overall aim of this review is to facilitate a coordinated journey of exploration, one which will hopefully realize the value that South Africa's microbial diversity has to offer.
Collapse
Affiliation(s)
- Varsha Chhiba
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Priyen Pillay
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Sibongile Mtimka
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- School of Life Sciences, Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Ghaneshree Moonsamy
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Lusisizwe Kwezi
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Ofentse J. Pooe
- School of Life Sciences, Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Tsepo L. Tsekoa
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| |
Collapse
|
5
|
Yang L, Chen Z, Zhang Y, Lu F, Liu Y, Cao M, He N. Hyperproduction of extracellular polymeric substance in Pseudomonas fluorescens for efficient chromium (VI) absorption. BIORESOUR BIOPROCESS 2023; 10:17. [PMID: 38647825 PMCID: PMC10992911 DOI: 10.1186/s40643-023-00638-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/13/2023] [Indexed: 04/25/2024] Open
Abstract
A novel extracellular polymeric substance (EPS) with flocculating activity produced by Pseudomonas fluorescein isolated from soil was studied in this paper. Firstly, atmospheric and room temperature plasma (ARTP) was applied to get a mutant of P. fluorescein with higher EPS production. A mutant T4-2 exhibited a 106.48% increase in flocculating activity compared to the original strain. The maximum EPS yield from T4-2 was enhanced up to 6.42 g/L, nearly 10 times higher than the original strain on a 3.6-L bioreactor with optimized fermentation conditions. Moreover, the flocculating activity of the mutant reached 3023.4 U/mL, 10.96-fold higher than that of T4. Further identification showed that EPS from mutant T4-2 was mainly composed of polysaccharide (76.67%) and protein (15.8%) with a molecular weight of 1.17 × 105 Da. The EPS showed excellent adsorption capacities of 80.13 mg/g for chromium (VI), which was much higher than many reported adsorbents such as chitosan and cellulose. The adsorption results were described by Langmuir isotherm and pseudo-second-order kinetic model. The thermodynamic parameters (ΔG0, ΔH0 and ΔS0) revealed that the adsorption process was spontaneous and exothermic. Adsorption mechanisms were speculated to be electrostatic interaction, reduction, and chelation.
Collapse
Affiliation(s)
- Lijie Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Ying Zhang
- Shandong Institute of Commerce and Technology, Jinan, 251000, People's Republic of China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
6
|
Bioflocculant produced by Bacillus velezensis and its potential application in brewery wastewater treatment. Sci Rep 2022; 12:10945. [PMID: 35768624 PMCID: PMC9243052 DOI: 10.1038/s41598-022-15193-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
This study was designed to evaluate the potential of bioflocculant producing strains isolated from wastewater sludge. According to the Plackett–Burman design, the response surface revealed glucose, magnesium sulfate, and ammonium sulfate as critical media components of the nutritional source, whereas the central composite design affirmed an optimum concentration of the critical nutritional source as 16.0 g/l (glucose), 3.5 g/l magnesium sulfate heptahydrate (MgSO4.7H2O), and 1.6 g/l ammonium sulfate ( (NH4)2SO4), yielding an optimal flocculation activity of 96.8%. Fourier Transformer Infrared Spectroscopy (FTIR) analysis confirmed the presence of hydroxyl, carboxyl and methoxyl in the structure of the bioflocculant. Additionally, chemical analysis affirmed the presence of mainly a polysaccharide in the main backbone of the purified bioflocculant with no detection of protein. Energy Dispersive X-ray analysis affirmed the presence of chlorine, phosphorous, oxygen and chlorine as representatives of elemental composition. Thermogravimetric (TGA) analysis revealed over 60% weight was retained at a temperature range of 700 °C. The purified bioflocculant remarkably removed chemical oxygen demand, biological oxygen demand and turbidity in brewery wastewater. This study suggested that the bioflocculant might be an alternate candidate for wastewater treatment.
Collapse
|
7
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
8
|
Czemierska M, Szcześ A, Jarosz-Wilkołazka A. Physicochemical factors affecting flocculating properties of the proteoglycan isolated from Rhodococcus opacus. Biophys Chem 2021; 277:106656. [PMID: 34274732 DOI: 10.1016/j.bpc.2021.106656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022]
Abstract
The water-soluble fraction of proteoglycan RS-89 isolated from the Rhodococcus opacus FCL89 and composed of 64.6% polysaccharide and 9.44% protein has been studied as regards its flocculating activity. The RS-89 polysaccharide component includes mannose, galactose and glucose at the molar ratio of 2.7: 1.3: 1. The basic factors affecting flocculating activity of the RS-89 have been established. Additionally, the kinetics of kaolin sedimentation without and with the bioflocculant was investigated. The presence of divalent metal ions had a positive effect on the flocculating activity of the RS-89. The addition of Ca2+ increased the RS-89 flocculating activity in comparison to the other studied metals. It was proved that the proteoglycan RS-89 achieved the highest flocculating activity at the concentration equal to 2 mg/L and in the presence of 10 mmol/L of Ca2+. The zeta potential values are less negative when there is an interaction between the kaolin particles and metal ions without the RS-89 in the tested systems. Therefore, the proposed mechanism to describe the proteoglycan interaction with kaolin particles in the presence of divalent ions includes charge neutralization and a bridging mechanism.
Collapse
Affiliation(s)
- Magdalena Czemierska
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Aleksandra Szcześ
- Department of Interfacial Phenomena, Institute of Chemical Sciences, Maria Curie-Sklodowska University, M. Curie-Sklodowska sq. 3, 20-031 Lublin, Poland.
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
9
|
Liu C, Sun D, Liu J, Zhu J, Liu W. Recent advances and perspectives in efforts to reduce the production and application cost of microbial flocculants. BIORESOUR BIOPROCESS 2021; 8:51. [PMID: 38650196 PMCID: PMC10992557 DOI: 10.1186/s40643-021-00405-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023] Open
Abstract
Microbial flocculants are macromolecular substances produced by microorganisms. Due to its non-toxic, harmless, and biodegradable advantages, microbial flocculants have been widely used in various industrial fields, such as wastewater treatment, microalgae harvest, activated sludge dewatering, heavy metal ion adsorption, and nanoparticle synthesis, especially in the post-treatment process of fermentation with high safety requirement. However, compared with the traditional inorganic flocculants and organic polymeric flocculants, the high production cost is the main bottleneck that restricts the large-scale production and application of microbial flocculants. To reduce the production cost of microbial flocculant, a series of efforts have been carried out and some exciting research progresses have been achieved. This paper summarized the research advances in the last decade, including the screening of high-yield strains and the construction of genetically engineered strains, search of cheap alternative medium, the extraction and preservation methods, microbial flocculants production as an incidental product of other biological processes, combined use of traditional flocculant and microbial flocculant, and the production of microbial flocculant promoted by inducer. Moreover, this paper prospects the future research directions to further reduce the production cost of microbial flocculants, thereby promoting the industrial production and large-scale application of microbial flocculants.
Collapse
Affiliation(s)
- Cong Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Di Sun
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jiawen Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Jingrong Zhu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China
| | - Weijie Liu
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, No.101, Shanghai road, Tongshan New District, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
10
|
Das N, Ojha N, Mandal SK. Wastewater treatment using plant-derived bioflocculants: green chemistry approach for safe environment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1797-1812. [PMID: 33905353 DOI: 10.2166/wst.2021.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rapid expansion of global trade and human activities has resulted in a massive increase in wastewater pollution into the atmosphere. Suspended solids, organic and inorganic particles, dissolved solids, heavy metals, dyes, and other impurities contained in wastewater from various sources are toxic to the atmosphere and pose serious health risks to humans and animals. Coagulation-flocculation technology is commonly used in wastewater treatment to remove cell debris, colloids, and contaminants in a comfortable and effective manner. Flocculants, both organic and inorganic, have long been used in wastewater treatment. However, because of their low performance, non-biodegradability, and associated health risks, their use has been limited. The use of eco-friendly bioflocculants in wastewater treatment has become essential due to the health implications of chemical flocculants. Because of their availability, biodegradability, and protection, plant-derived coagulants/flocculants and plant-based grafted bioflocculants have recently made significant progress in wastewater treatment. This study will undoubtedly provide a clearer understanding of the current state, challenges, and solutions for bioflocculation in wastewater remediation using green materials for the sake of a cleaner climate.
Collapse
Affiliation(s)
- Nilanjana Das
- Bioremediation Laboratory, Department of Biomedical Sciences, School of Bio Sciences and Technology, VIT, (Vellore Institute of Technology), Vellore, Tamil Nadu 632014, India E-mail:
| | - Nupur Ojha
- Bioremediation Laboratory, Department of Biomedical Sciences, School of Bio Sciences and Technology, VIT, (Vellore Institute of Technology), Vellore, Tamil Nadu 632014, India E-mail:
| | - Sanjeeb Kumar Mandal
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu 641062, India
| |
Collapse
|
11
|
Argun ME, Akkuş M, Ateş H. Investigation of micropollutants removal from landfill leachate in a full-scale advanced treatment plant in Istanbul city, Turkey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141423. [PMID: 32818893 DOI: 10.1016/j.scitotenv.2020.141423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Although the levels of micropollutants in landfill leachate and municipal wastewater are well-established, the individual removal mechanisms and the fate of micropollutants throughout a landfill leachate treatment plant (LTP) were seldom investigated. Therefore, the determination of the removal efficiencies and the fates of micropollutants in a full-scale leachate treatment plant located in the largest city of Turkey were aimed in this study. Some important processes, such as equalization pond, bioreactor, ultrafiltration (UF) and nanofiltration (NF), are being operated in the treatment plant. Landfill leachate was characterized as an intense pollution source of macro and micropollutants compared to other water types. Chemical oxygen demand (COD), NH3, suspended solids (SS) and electrical conductivity (EC) values of the landfill leachate (and their removal efficiencies in the treatment plant) were determined as 18,656 ± 12,098 mg/L (98%), 3090 ± 845 mg/L (99%), 4175 ± 1832 mg/L (95%) and 31 ± 2 mS/cm (51%), respectively. Within the scope of the study, the most frequently and abundantly detected micropollutants in the treatment plant were found as heavy metals (8 ± 1.7 mg/L), VOCs (38 ± 2 μg/L), alkylphenols (9 ± 3 μg/L) and phthalates (8 ± 3 μg/L) and the overall removal efficiencies of these micropollutants ranged from -11% to 100% in the treatment processes. The main removal mechanism of VOCs in the aerobic treatment process has been found as the volatilization due to Henry constants greater than 100 Pa·m3/mol. However, the molecular weight cut off restriction of UF membrane has caused to less or negative removal efficiencies for some VOCs. The biological treatment unit which consists of sequential anoxic and oxic units (A/O) was found effective on the removal of PAHs (62%) and alkylphenols (87%). It was inferred that both NO3 accumulation in anoxic reactor, high hydraulic retention time (HRT) and sludge retention time (SRT) in aerobic reactor provide higher biodegradation and volatilization efficiencies as compared to the literature. Membrane processes were more effective on the removal of alkylphenols (60-80%) and pesticides (59-74%) in terms of influent and effluent loads of each unit. Removal efficiencies for Cu, Ni and Cr, which were the dominant heavy metals, were determined as 92, 91 and 51%, respectively and the main removal mechanism for heavy metals has thought to be coprecipitation of suspended solids by microbial biopolymers in the bioreactor and the separation of colloids during membrane filtration. Total effluent loads of the LTP for VOCs, semi volatiles and heavy metals were 1.0 g/day, 5.2 g/day and 1.5 kg/day, respectively. It has been concluded that the LTP was effectively removing both conventional pollutants and micropollutants with the specific operation costs of 0.27 $/(kg of removed COD), 0.13 $/(g of removed VOCs), 0.35 $/(g of removed SVOCs) and 2.6 $/(kg of removed metals).
Collapse
Affiliation(s)
- Mehmet Emin Argun
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Konya, Turkey.
| | - Mehmet Akkuş
- Konya Technical University, Institution of Graduate Education, Department of Environmental Engineering, Konya, Turkey
| | - Havva Ateş
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Konya, Turkey
| |
Collapse
|
12
|
Marine Actinobacteria Bioflocculant: A Storehouse of Unique Biotechnological Resources for Wastewater Treatment and Other Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The bioactive compounds produced by actinobacteria have played a major role in antimicrobials, bioremediation, biofuels, enzymes, and anti-cancer activities. Biodegradable microbial flocculants have been produced by bacteria, algae, and fungi. Microbial bioflocculants have also attracted biotechnology importance over chemical flocculants as a result of degradability and environmentally friendly attributes they possess. Though, freshwater actinobacteria flocculants have been explored in bioflocculation. Yet, there is a paucity of information on the application of actinobacteria flocculants isolated from the marine environment. Similarly, marine habitats that supported the biodiversity of actinobacteria strains in the field of biotechnology have been underexplored in bioflocculation. Hence, this review reiterates the need to optimize culture conditions and other parameters that affect bioflocculant production by using a response surface model or artificial neural network.
Collapse
|
13
|
Wastewater Treatment by a Polymeric Bioflocculant and Iron Nanoparticles Synthesized from a Bioflocculant. Polymers (Basel) 2020; 12:polym12071618. [PMID: 32708211 PMCID: PMC7407570 DOI: 10.3390/polym12071618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022] Open
Abstract
Wastewater remains a global challenge. Various methods have been used in wastewater treatment, including flocculation. The aim of this study was to synthesize iron nanoparticles (FeNPs) using a polymeric bioflocculant and to evaluate its efficacy in the removal of pollutants in wastewater. A comparison between the efficiencies of the bioflocculant and iron nanoparticles was investigated. A scanning electron microscope (SEM) equipped with an energy-dispersive X-ray analyzer (EDX) and Fourier transform-infrared (FT-IR) spectroscopy were used to characterize the material. SEM-EDX analysis revealed the presence of elements such as O and C that were abundant in both samples, while FT-IR studies showed the presence of functional groups such as hydroxyl (–OH) and amine (–NH2). Fe nanoparticles showed the best flocculation activity (FA) at 0.4 mg/mL dosage as opposed to that of the bioflocculant, which displayed the highest flocculation activity at 0.8 mg/mL, and both samples were found to be cation-dependent. When evaluated for heat stability and pH stability, FeNPs were found thermostable with 86% FA at 100 °C, while an alkaline pH of 11 favored FA with 93%. The bioflocculant flocculated poorly at high temperature and was found effective mostly at a pH of 7 with over 90% FA. FeNPs effectively removed BOD (biochemical oxygen demand) and COD (chemical oxygen demand) in all two wastewater samples from coal mine water and Mzingazi River water. Cytotoxicity results showed both FeNPs and the bioflocculant as nontoxic at concentrations up to 50 µL.
Collapse
|
14
|
Li H, Wu S, Du C, Zhong Y, Yang C. Preparation, Performances, and Mechanisms of Microbial Flocculants for Wastewater Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1360. [PMID: 32093205 PMCID: PMC7068532 DOI: 10.3390/ijerph17041360] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022]
Abstract
In recent years, close attention has been paid to microbial flocculants because of their advantages, including safety to humans, environmental friendliness, and acceptable removal performances. In this review, the preparation methods of microbial flocculants were first reviewed. Then, the performances of bioflocculants in the removal of suspended solids, heavy metals, and other organic pollutants from various types of wastewater were described and commented, and the removal mechanisms, including adsorption bridging, charge neutralization, chemical reactions, and charge neutrality, were also discussed. The future research needs on microbial flocculants were also proposed. This review would lead to a better understanding of current status, challenges, and corresponding strategies on microbial flocculants and bioflocculation in wastewater treatment.
Collapse
Affiliation(s)
- Huiru Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; (H.L.); (S.W.)
| | - Shaohua Wu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; (H.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (C.D.); (Y.Z.)
| | - Cheng Du
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (C.D.); (Y.Z.)
| | - Yuanyuan Zhong
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (C.D.); (Y.Z.)
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; (H.L.); (S.W.)
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (C.D.); (Y.Z.)
- Hunan Provincial Environmental Protection Engineering Center for Organic Pollution Control of Urban Water and Wastewater, Changsha 410001, China
| |
Collapse
|