1
|
Ma Y, Mao C, Du X, Xie C, Zhou J, Tao X, Dang Z, Lu G. Insight into the application of magnetic molecularly imprinted polymers in soil-washing effluent: Selective removal of 4,4'-dibromodiphenyl ether, high adaptivity of material and efficient recovery of eluent. CHEMOSPHERE 2023; 334:138990. [PMID: 37209856 DOI: 10.1016/j.chemosphere.2023.138990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Soil washing techniques can effectively remove soil polybrominated diphenyl ethers (PBDEs), but further removal of PBDEs from washing effluent is disrupted by environmental factors and coexisting organic matter. Hence, this work prepared novel magnetic molecularly imprinted polymers (MMIPs) to selectively remove PBDEs in soil washing effluent and recycling surfactants, with Fe3O4 nanoparticles as the magnetic core, methacrylic acid (MAA) as the functional monomer, and ethylene glycol dimethacrylate (EGDMA) as the cross-linker. Later, the prepared MMIPs were applied to adsorb 4,4'-dibromodiphenyl ether (BDE-15) in Triton X-100 soil-washing effluent and characterized by scanning electron microscopy (SEM), infrared spectrometry (FT-IR), nitrogen adsorption and desorption experiments. According to our observations, BDE-15 equilibrium adsorptions on dummy-template magnetic molecularly imprinted adsorbent (D-MMIP, 4-bromo-4'-hydroxyl biphenyl as template) and part-template magnetic molecularly imprinted adsorbent (P-MMIP, toluene as template) were reached within 40 min, and their equilibrium adsorption capacities were 164.54 μmol/g and 145.55 μmol/g, respectively, with imprinted factor α > 2.03, selectivity factor β > 2.14, and selectivity S > 18.05. MMIPs exhibited good adaptability to pH, temperature, and cosolvent. Our Triton X-100 recovery rate reached as high as 99.9%, and MMIPs maintained a more than 95% adsorption capacity after being recycled five times. Our results offer a novel approach to selectively remove PBDEs in soil-washing effluent, with efficient recovery of surfactants and adsorbents in soil-washing effluent.
Collapse
Affiliation(s)
- Yao Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; China National Research Center of Testing Techniques for Building Material, China Building Materials Academy, Beijing, 100024, China
| | - Changyu Mao
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaodong Du
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Chunsheng Xie
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing, 526061, China.
| | - Jiangmin Zhou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Maternal Diet Quality and the Health Status of Newborns. Foods 2022; 11:foods11233893. [PMID: 36496701 PMCID: PMC9739031 DOI: 10.3390/foods11233893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/12/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
The maternal diet during pregnancy affects neonatal health status. The objective of this study was to assess the nutritional quality of the maternal diet, and its contamination by persistent organic pollutants (POPs), in pregnant women living in two areas of the Czech Republic with different levels of air pollution, and subsequently to assess the relationship of these two factors with birth weight and neonatal oxidative stress. To determine the level of oxidative stress, 8-isoprostane concentrations in umbilical cord plasma were measured. The overall nutritional quality of the maternal diet was not optimal. Of the nutritional factors, protein intake proved to be the most significant showing a positive relationship with birth weight, and a negative relationship with the oxidative stress of newborns. Dietary contamination by persistent organic pollutants was low and showed no statistically significant relationship with birth weight. Only one of the 67 analyzed POPs, namely the insecticide dichlorodiphenyltrichloroethane (DDT), showed a statistically significant positive relationship with the level of neonatal oxidative stress.
Collapse
|
3
|
Baumer A, Jäsch S, Ulrich N, Bechmann I, Landmann J, Stöver A, Escher BI. Chemical mixtures in human post-mortem tissues assessed by a combination of chemical analysis and in vitro bioassays after extraction with silicone. ENVIRONMENT INTERNATIONAL 2021; 157:106867. [PMID: 34537519 DOI: 10.1016/j.envint.2021.106867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 09/05/2021] [Indexed: 05/12/2023]
Abstract
Passive equilibrium sampling of chemical mixtures from different human post-mortem tissues (liver, brain (cerebrum and cerebellum), adipose tissue) and blood was combined with instrumental analysis using direct sample introduction (DSI) GC-MS/MS and bioanalytical profiling using in vitro bioassays targeting the activation of the aryl hydrocarbon receptor (AhR-CALUX), the adaptive stress response (AREc32) and cytotoxicity. The tissues stemmed from pathology samples collected in two German cities and covered males and females aged 21 to 100 with a mean age of 67 years. Neutral organic chemicals were extracted using polydimethylsiloxane (PDMS) at mass ratios of tissue to PDMS of approximately 6 for blood, 3 for adipose tissue and 10 for liver and brain. Amounts of chemicals in PDMS were converted to lipid-associated concentrations using previously measured partition constants that were chemical-independent despite covering eight orders of magnitude in hydrophobicity. Up to 35 of 99 targeted chemicals were detected in 6 tissues of 16 individuals (88 samples in total), among them legacy persistent organic pollutants (POP) such as DDT and derivatives and polychlorinated biphenyls (PCB) but also modern pesticides and chemicals present in consumer products. POPs were highest in adipose tissue and lipid-associated concentrations increased with age, while concentrations of fragrance materials such as galaxolide were independent of age. In tissues from the same individual, chemical concentrations mostly increased from similar levels in brain and blood to higher levels in liver and highest in adipose tissue. However, easily degradable chemicals such as phenanthrene were mainly detected in blood and brain, and very hydrophilic chemicals were least abundant in adipose tissue. The passive sampling method allows a direct comparison of chemical burden between different tissues and may have forensic applications, for example to study internal distributions or to use one tissue type as a proxy for others. The sum of concentrations of the detected chemicals was positively correlated with the bioassay responses but mixture modeling showed that the detected chemicals explained less than 2% of the activation of the AhR and less than 0.5% of cytotoxicity. This means that more than 10,000 chemicals would need to be included in an analytical method to capture all the effects with many chemicals potentially being below detection limits but still contributing to mixture effects. Therefore, we propose a smart combination of chemical analysis and bioassays to quantify priority chemicals but use bioassay responses as effect-scaled concentrations to capture the entire exposome in future epidemiological studies.
Collapse
Affiliation(s)
- Andreas Baumer
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Sandra Jäsch
- Department Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Nadin Ulrich
- Department Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany
| | - Julia Landmann
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany
| | - Andreas Stöver
- Institute of Legal Medicine, Ludwig-Maximilians University Munich, Nußbaumstraße 26, 80336 Munich, Germany
| | - Beate I Escher
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Centre for Applied Geosciences, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany.
| |
Collapse
|