1
|
Badalge NDK, Choi NE, Shin KH, Cho Y, Kim S, Oh NH, Hur J. Utilizing fluorescence indicators to apportion organic sources in estuarine/coastal sediments: A comparison with a stable isotopic model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177086. [PMID: 39461524 DOI: 10.1016/j.scitotenv.2024.177086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Coastal sediments accumulate organic matter (OM) from diverse sources, including local anthropogenic pollution. Effective source tracking of sediment OM is crucial for pollution source management. This study compares fluorescence proxies and stable isotopic ratios as tracers for sediment OM in Gangu Port, Korea. An optimized extraction method using distilled water for 0.5 h yielded distinct fluorescence signatures. The humification index (HIX) and protein-like component (C3%) showed ideal mixing behavior with two end-members (fishery market sediment and algae). A Bayesian end-member mixing analysis model revealed that agricultural soil is the prevalent contributor to sediments, aligning with land use patterns. The fluorescence-based model showed higher sensitivity to anthropogenic influences compared to traditional stable isotope ratios. The results strongly agreed with isotope ratio-based predictions, exhibiting a positive correlation (p < 0.05) at 8 out of 14 sites. This study highlights the potential of fluorescence-based tracking to complement or replace conventional stable isotope methods.
Collapse
Affiliation(s)
| | - Na Eun Choi
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, South Korea.
| | - Yusang Cho
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, South Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, South Korea
| | - Neung-Hwan Oh
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul 08826, South Korea; Environmental Planning Institute, Seoul National University, Seoul 08826, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
2
|
Cai S, Lao Q, Chen C, Zhu Q, Chen F. The impact of algal blooms on promoting in-situ N 2O emissions: A case in Zhanjiang bay, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120935. [PMID: 38648725 DOI: 10.1016/j.jenvman.2024.120935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Under the influence of many factors, such as climate change, anthropogenic eutrophication, and the development of aquaculture, the area and frequency of algal blooms have showed an increasing trend worldwide, which has become a challenging issue at present. However, the coupled relationship between nitrous oxide (N2O) and algal blooms and the underlying mechanisms remain unclear. To address this issue, 15N isotope cultures and quantitative polymerase chain reaction (qPCR) experiments were conducted in Zhanjiang Bay during algal and non-algal bloom periods. The results showed that denitrification and nitrification-denitrification were the two processes responsible for the in-situ production of N2O during algal and non-algal bloom periods. Stable isotope rate cultivation experiments indicated that denitrification and nitrification-denitrification were promoted in the water during the algal bloom period. The in-situ production of N2O during the algal bloom period was three-fold that during the non-algal bloom period. This may be because fresh particulate organic matter (POM) from the organisms responsible for the algal bloom provides the necessary anaerobic and hypoxic environment for denitrification and nitrification-denitrification in the degradation environment. Additionally, a positive linear correlation between N2O concentrations and ammonia-oxidizing bacteria (AOB) and denitrifying bacteria (nirK and nirS) also supported the significant denitrification and nitrification-denitrification occurring in the water during the algal bloom period. However, the algal bloom changed the main process for the in-situ production of N2O, wherein it shifted from denitrification during the non-algal bloom period to nitrification-denitrification during the algal bloom period. The results of our study will improve our understanding of the processes responsible for the in-situ production of N2O during the algal bloom period, and can help formulate effective policies to mitigate N2O emissions in the bay.
Collapse
Affiliation(s)
- Shangjun Cai
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qibin Lao
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chunqing Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qingmei Zhu
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory for Coastal Ocean Variation and Disaster Prediction, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Fajin Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory for Coastal Ocean Variation and Disaster Prediction, Guangdong Ocean University, Zhanjiang, 524088, China; Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
3
|
Chang TC, Lin WY, Fang TH. Spatial variability of nitrogen cycling in the sediments of the Danshuie River Estuary (Northern Taiwan). MARINE POLLUTION BULLETIN 2023; 197:115776. [PMID: 37979530 DOI: 10.1016/j.marpolbul.2023.115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Dissolved N species, TOC and total N (TN) in sediment cores (SC) collected from an eutrophic estuary were analyzed to understand the N geochemical variation in SC of the eutrophic estuary. Extremely higher concentrations of ammonium (6550 μM) and DON (2050 μM) were observed in pore water of the upper estuary and both concentrations generally accounted for 65-99 % and 1-34 % of the dissolved total N pool, respectively, in the three sediment pore waters. The DON and TN concentrations decreased with increasing depth in SC of the upper estuary, opposite the ammonium profile, suggesting that the mineralization of DON and TN provided the ammonium source to the SC. While, the TN mineralization was more profound than the DON mineralization in SC of the middle and lower estuary. The mineralization rate of DON and TN obviously differed from the different depth intervals of the three SC.
Collapse
Affiliation(s)
- Ting Chia Chang
- Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Wei Yu Lin
- Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Tien Hsi Fang
- Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 202, Taiwan; Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan.
| |
Collapse
|
4
|
Yang Y, Li Y, Huang C, Chen F, Chen C, Zhang H, Deng W, Ye F. Anthropogenic influences on the sources and distribution of organic carbon, black carbon, and heavy metals in Daya Bay's surface sediments. MARINE POLLUTION BULLETIN 2023; 196:115571. [PMID: 37783163 DOI: 10.1016/j.marpolbul.2023.115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
The total organic carbon (TOC), total nitrogen (TN), black carbon (BC), δ13CTOC, δ15N, δ13CBC, grain size, and heavy metals of surface sediments collected from Daya Bay were determined to investigate the spatial distributions of these parameters and to evaluate the influences of human activities. Marine organic matter was found to constitute approximately 84.41 ± 7.70 % of these sediments on average. The western and northern regions of Daya Bay exhibited relatively fine grain sizes, weak hydrodynamic conditions, and high sedimentation rates, which favored the burial and preservation of organic matter. The high concentration of organic matter could be attributed to the influence of petroleum and aquaculture industries. Fossil fuels were the main source of BC. The enrichment factor (EF) and geo-accumulation index (Igeo) were used to evaluate the sources and pollution levels of heavy metals. The results revealed that the source and distribution of heavy metals were strongly influenced by human activities, resulting in moderate pollution levels across most regions of Daya Bay. A strong correlation was observed between the Igeo values of heavy metals and BC, TOC, TN, and mean particle grain size (Mz). This suggests that the ability of sediments in Daya Bay to enrich and adsorb heavy metals depends on the sediment grain size, the content and type of organic matter. Importantly, sediments in the inner bay of Daya Bay exhibited a greater capacity to impede the migration of heavy metals compared to those in the outer bay.
Collapse
Affiliation(s)
- Yin Yang
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Yilan Li
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Chao Huang
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; Key Laboratory of Marine Mineral Resources, Ministry of Natural and Resources, Guangzhou 511458, China; Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, China.
| | - Fajin Chen
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang 524088, China; Key Laboratory of Space Ocean Remote Sensing and Application, Ministry of Natural Resources, China.
| | - Chunqing Chen
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Huiling Zhang
- College of Ocean Engineering and Energy, Guangdong Ocean University, Zhanjiang 524088, China
| | - Wenfeng Deng
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Feng Ye
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
5
|
Logemann AE, Röhrs S, Brockmeyer B. Distribution of hydrophobic organic contaminants in marine sediment fines-An alternative normalization strategy? INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1348-1360. [PMID: 36688303 DOI: 10.1002/ieam.4744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
The necessary normalization of contaminant concentrations, in order to be able to compare contaminant content in sediments with different sediment properties, is currently not standardized within environmental monitoring and assessment programs. Therefore, this study investigates an alternative normalization strategy for hydrophobic organic contaminants (HOCs) by removing the coarse and chemically inert sediment fraction using an improved, half-automated wet-sieving method. We compare the results to commonly used TOC normalization (2.5% total organic carbon [TOC], OSPAR). Simultaneously, the study provides a comprehensive overview of HOC concentrations in sediment fines (<63 µm) for the German Exclusive Economic Zone and therefore gathers information about the more bioavailable and mobile part of the sediment that particularly accumulates HOCs due to its high surface area. We analyzed bulk sediment samples and their corresponding fine grain fractions from 25 stations in the German Exclusive Economic Zone for 41 HOCs including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides. The results indicate that the wet-sieving procedure is capable of physically normalizing the concentrations of the investigated HOCs and is useful for the comparison of concentrations in different sediment types. The wet-sieving procedure is more time consuming than the normalization to the TOC content. However, it offers the possibility of lowering the detection limits (LODs) through the analytical sample preparation procedure used, as sieving concentrates the contaminants. Therefore, a higher number of results >LOD were detected in sediment fines, leading to more informative data sets. In contrast to the commonly used normalization to 2.5% TOC, the statistical analyses carried out (principal component analysis with subsequent cluster analysis) additionally indicate that physical normalization allows better differentiation of sampling sites by contaminant sources and geographic location rather than their sediment characteristics. Integr Environ Assess Manag 2023;19:1348-1360. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Anna E Logemann
- Federal Maritime and Hydrographic Agency (BSH), Hamburg, Germany
- Department of Earth Sciences, Hamburg University, Hamburg, Germany
| | - Steffen Röhrs
- Hamburg University of Applied Sciences, Hamburg, Germany
| | - Berit Brockmeyer
- Federal Maritime and Hydrographic Agency (BSH), Hamburg, Germany
| |
Collapse
|
6
|
Ouyang J, Wu H, Yang H, Wang J, Liu J, Tong Y, Wang D, Huang M. Global warming induces the succession of photosynthetic microbial communities in a glacial lake on the Tibetan Plateau. WATER RESEARCH 2023; 242:120213. [PMID: 37354841 DOI: 10.1016/j.watres.2023.120213] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/26/2023]
Abstract
As an important freshwater resource in the Qinghai-Tibet Plateau, glacial lakes are being immensely affected by global warming. Due to the lack of long-term monitoring data, the processes and driving mechanisms of the water ecology of these glacial lakes in a rapidly changing climate are poorly understood. This study, for the first time, reconstructed changes in water temperature and photosynthetic microbial communities over the past 200 years in Lake Basomtso, a glacial lake on the southeastern Tibetan Plateau. Temperatures were reconstructed using a paleotemperature proxy based on branched glycerol dialkyl glycerol tetraethers (brGDGTs), the cell membrane lipids of some bacteria, and photosynthetic microbial communities were determined by high-throughput DNA sequencing. The reconstructed mean annual air temperature (MAAT) at Lake Basomtso varied between 6.9 and 8.3 °C over the past 200 years, with a rapid warming rate of 0.25 °C /10 yrs after 1950s. Carbon isotope of sediment and n-alkane analyses indicate that ≥95% of the organic matter in Lake Basomtso is derived from a mixture of terrestrial C3 plants and endogenous organic matter inputs, and the proportion of endogenous organic matter in the sediments has gradually increased since the 1960s. The sedimentary DNA analyses of the sediment core reveal that Chloracea is the most dominant prokaryotic photosynthetic microbial group (84.5%) over the past 200 years. However, the relative abundance of Cyanobacteria has increased from ≤6.8% before the 1960s to 15.5% nowadays, suggesting that warmer temperatures favor the growth of Cyanobacteria in glacial lakes. Among eukaryotic photosynthetic microorganisms, the Chlorophyceae have been gradually replaced by Dinoflagellata and Diatomacae since the 1980s, although the Chlorophyceae still had the highest average relative abundance overall (30-40%). The Pb isotopic composition, together with the total phosphorous concentration, implies that human activity exerted a minimal impact on Lake Basomtso over the past 200 yrs. However, the synchronous fluctuations of total organic carbon (TOC), total nitrogen (TN), and metal elements in sediments suggest that temperature appears to have a strong influence on nutrient input to Lake Basomtso by controlling glacial erosion. Global warming and the concurrent increase in glacial meltwater are two main factors driving changes in nutrient inputs from terrestrial sources which, in turn, increases the lake productivity, and changes microbial community composition. Our findings demonstrate the sensitive response of glacial lake ecology to global warming. It is necessary to strengthen the monitoring and research of glacial lake ecology on the Tibetan plateau, so as to more scientifically and accurately understand the response process and mechanism of the glacial lake ecosystem under global warming.
Collapse
Affiliation(s)
- Jingwu Ouyang
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Hongchen Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China.
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianbao Liu
- Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; College of Ecological Environment, Tibet University, Lasa 850000, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Miao Huang
- Hubei Key Laboratory of Critical Zone Evolution, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
7
|
Seidel L, Ketzer M, Broman E, Shahabi-Ghahfarokhi S, Rahmati-Abkenar M, Turner S, Ståhle M, Bergström K, Manoharan L, Ali A, Forsman A, Hylander S, Dopson M. Weakened resilience of benthic microbial communities in the face of climate change. ISME COMMUNICATIONS 2022; 2:21. [PMID: 37938692 PMCID: PMC9723771 DOI: 10.1038/s43705-022-00104-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 07/29/2023]
Abstract
Increased ocean temperature associated with climate change is especially intensified in coastal areas and its influence on microbial communities and biogeochemical cycling is poorly understood. In this study, we sampled a Baltic Sea bay that has undergone 50 years of warmer temperatures similar to RCP5-8.5 predictions due to cooling water release from a nuclear power plant. The system demonstrated reduced oxygen concentrations, decreased anaerobic electron acceptors, and higher rates of sulfate reduction. Chemical analyses, 16S rRNA gene amplicons, and RNA transcripts all supported sediment anaerobic reactions occurring closer to the sediment-water interface. This resulted in higher microbial diversities and raised sulfate reduction and methanogenesis transcripts, also supporting increased production of toxic sulfide and the greenhouse gas methane closer to the sediment surface, with possible release to oxygen deficient waters. RNA transcripts supported prolonged periods of cyanobacterial bloom that may result in increased climate change related coastal anoxia. Finally, while metatranscriptomics suggested increased energy production in the heated bay, a large number of stress transcripts indicated the communities had not adapted to the increased temperature and had weakened resilience. The results point to a potential feedback loop, whereby increased temperatures may amplify negative effects at the base of coastal biochemical cycling.
Collapse
Affiliation(s)
- Laura Seidel
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden.
| | - Marcelo Ketzer
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | | | | - Stephanie Turner
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Magnus Ståhle
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Kristofer Bergström
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Lokeshwaran Manoharan
- National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ashfaq Ali
- National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Department of Immunotechnology, Lund University, Lund, Sweden
| | - Anders Forsman
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Samuel Hylander
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Mark Dopson
- Centre for ecology and evolution in microbial model systems (EEMiS), Linnaeus University, Kalmar, Sweden
| |
Collapse
|
8
|
Chen F, Lao Q, Liu M, Huang P, Chen B, Zhou X, Chen P, Chen K, Song Z, Cai M. Impact of intensive mariculture activities on microplastic pollution in a typical semi-enclosed bay: Zhanjiang Bay. MARINE POLLUTION BULLETIN 2022; 176:113402. [PMID: 35150985 DOI: 10.1016/j.marpolbul.2022.113402] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) was investigated in Zhanjiang Bay, a semi-enclosed bay in south China and famous for considerable mariculture industry, to evaluate whether mariculture activities accelerated MP pollution. The MP abundances ranged from 0 to 2.65 n/m3 (number/m3), showing seasonal variances with higher levels in May and September and lower levels in January. In the inner part of the bay, a significantly high MP abundance and predominance of foam were found during the oyster breeding period, and pollution sources were prone to be single and extensive. This suggested that MPs were strongly influenced by the intensive plastic products for oyster culturing, especially during breeding. Moreover, plastic cages used for culturing were the main source of MPs in the central part of the bay. By conducting statistical analysis for eight representative bays, the economic growth, social development, agriculture structure, and aquaculture development were supposed to influence the local MP pollution level.
Collapse
Affiliation(s)
- Fajin Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qibin Lao
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; Marine Environmental Monitoring Centre of Beihai, State Oceanic Administration, Beihai 266031, China
| | - Mengyang Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Peng Huang
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Bin Chen
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China
| | - Xin Zhou
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Piao Chen
- Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China
| | - Kai Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Zhiguang Song
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Minggang Cai
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
9
|
The Environmental Effects of the Innovative Ejectors Plant Technology for the Eco-Friendly Sediment Management in Harbors. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A sediment bypassing plant based on innovative jet pump, ejectors, has been tested in the first-of-a-kind demo application at the harbor of Cervia (Italy, Northern Adriatic Sea). The ejector is a jet pump aimed to reduce sediment accumulation in navigation channels and coastal areas. Herein we present results of the first study assessing the potential ecological effects of the ejectors plant. Sediment characteristics, benthic, and fish assemblages before and after the plant activation have been analyzed in the putatively impacted (the sediment removal and discharge) areas and four control locations, one time before and two times after plant activation. Ejectors plant operation resulted in a reduction of the mud and organic matter content in the sediment, as well as in changes in shell debris amount in the impacted areas. Abundance and species richness of benthic macroinvertebrates, initially reduced in the impacted areas, probably due to the previous repeated dredging, returned to higher values during demo plant continuous operation. Higher diversity of fish fauna was observed in the study area during plant operation period. Observed dynamics of the ecological status of the marine habitat suggest that an ejectors plant could represent an eco-friendly solution alternative to dredging operations to solve harbor siltation problems.
Collapse
|
10
|
Chen F, Lu X, Song Z, Huang C, Jin G, Chen C, Zhou X, Lao Q, Zhu Q. Coastal currents regulate the distribution of the particulate organic matter in western Guangdong offshore waters as evidenced by carbon and nitrogen isotopes. MARINE POLLUTION BULLETIN 2021; 172:112856. [PMID: 34425368 DOI: 10.1016/j.marpolbul.2021.112856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The δ13C, δ15N and C/N ratio of the particulate organic matter (POM) in western Guangdong waters were determined to evaluate the impacts of the coastal currents on the POM in spring and summer. The predominance of photosynthetic organic matter in the nearshore was triggered by nutrients brought by the coastal currents in spring and summer, while the proportion of terrestrial organic matter in the offshore was very high in spring but low in summer. In spring, the weaker and narrower coastal currents carried insufficient nutrients (phosphate deficiency) to the offshore and prohibited phytoplankton production. This scenario contributes to the dominance of terrestrial organic matter transported by the cyclonic circulation beyond the coastal currents in the offshore in spring. The Bayesian mixing model reveals that the proportion of terrestrial organic matter (with 75.8% of C3 plants) in the offshore was higher in spring than in summer (with 33.7% of C3 plants).
Collapse
Affiliation(s)
- Fajin Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xuan Lu
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhiguang Song
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Chao Huang
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangzhe Jin
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunqing Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xin Zhou
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qibin Lao
- Marine Environmental Monitoring Centre of Beihai, State Oceanic Administration, Beihai 266031, China
| | - Qingmei Zhu
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
11
|
Spatiotemporal Distribution Characteristics of Nutrients in the Drowned Tidal Inlet under the Influence of Tides: A Case Study of Zhanjiang Bay, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042089. [PMID: 33669962 PMCID: PMC7924833 DOI: 10.3390/ijerph18042089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022]
Abstract
The tidal dynamics and the characteristics of pollutant migration in the drowned-valley tidal inlet, a typical unit of coastal tidal inlets, are strongly influenced by geomorphological features. Along with the development of society and the economy, the hydrodynamic and water quality environment of the tidal inlet is also becoming more disturbed by human activities, such as reclamation of the sea and the construction of large bridges. In this study, a typical drowned-valley tidal inlet, Zhanjiang Bay (ZJB), was selected for the establishment of a model via coupling of a tidal hydrodynamic model and water quality numerical model. This model can be used to simulate the migration and diffusion of pollutants in ZJB. The spatial and temporal variation processes of water quality factors of the bay under the influence of special geomorphic units was simulated at the tidal-inlet entrance, the flood/ebb tidal delta, and the tidal basin. The results show that ZJB has strong tidal currents that are significantly affected by the terrain. Under the influence of the terrain and tidal currents, the phosphorus and nitrogen concentration at the flood-tide and ebb-tide moments showed obvious temporal and spatial differences in the ebb-tide delta, tidal-inlet entrance, flood-tide delta, and tidal basin. In this study, we analyzed the response mechanism of the water quality environment to the drowned-valley tidal inlet, and this can provide theoretical guidance and a basis for decision-making toward protecting the ecology and water security of ZJB.
Collapse
|
12
|
Vezzone M, Dos Anjos RM, Cesar RG, Muniz M, Cardoso R, Felizardo JP, Vasconcelos D, Polivanov H. Using stable isotopes to discriminate anthropogenic impacts of the sedimentary organic matter pollution in the Rodrigo de Freitas Lagoon (RJ, Brazil). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4515-4530. [PMID: 32944860 DOI: 10.1007/s11356-020-10835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Over the last decades, the Rodrigo de Freitas Lagoon (RFL), Rio de Janeiro, Brazil, has been impacted by the release of untreated domestic sewage, causing eutrophication processes with negative effects on its biota. Recently, the RFL underwent urban interventions to fulfill the demands of the 2016 Olympic Games, which included building the waist gallery and monitoring clandestine waste discharges into the underground drainage network. Organic-source tracing methods can be successfully used to characterize the organic matter transported from the urbanized areas to the RLF. The application of the elemental (C, N) and stable isotope (δ15N and δ13C) fingerprint methods in sediments from the RLF indicated a reduction in the domestic sewage inputs from 32 ± 16 to 12 ± 13% between 2015 and 2017. However, the sewage inputs continue being worrying. Our results also suggest that the main source of organic matter pollution in the lagoon comes from indiscriminate domestic sewage release from river channels. Secondary pollution sources are associated with the underground drainage network that still shows punctual and irregular releases of domestic sewage. Petroleum products, mainly from sewers, also show as possible organic pollution sources. Finally, the findings indicate that the interventions carried out in the RFL are promising. However, they were insufficient to cease the pollutant inputs and mitigate the negative impacts of eutrophication.
Collapse
Affiliation(s)
- Mariana Vezzone
- Departamento de Geologia, CCMN - Instituto de Geociências, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil.
- Instituto de Física, Federal Fluminense University, UFF, Av. Litorânea, s/n - Praia Vermelha, Niterói, RJ, Brazil.
| | - Roberto Meigikos Dos Anjos
- Instituto de Física, Federal Fluminense University, UFF, Av. Litorânea, s/n - Praia Vermelha, Niterói, RJ, Brazil
| | - Ricardo Gonçalves Cesar
- Departamento de Geografia, CCMN - Instituto de Geociências, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Marcelo Muniz
- Instituto de Física, Federal Fluminense University, UFF, Av. Litorânea, s/n - Praia Vermelha, Niterói, RJ, Brazil
| | - Renan Cardoso
- Instituto de Física, Federal Fluminense University, UFF, Av. Litorânea, s/n - Praia Vermelha, Niterói, RJ, Brazil
| | - João Paulo Felizardo
- Instituto de Física, Federal Fluminense University, UFF, Av. Litorânea, s/n - Praia Vermelha, Niterói, RJ, Brazil
| | - Daniela Vasconcelos
- Departamento de Geoquímica, Instituto de Química, Federal Fluminense University, UFF, Outeiro São João Batista S/N., Niterói, RJ, Brazil
| | - Helena Polivanov
- Departamento de Geologia, CCMN - Instituto de Geociências, Federal University of Rio de Janeiro, UFRJ, Av. Athos da Silveira Ramos, 274 - Cidade Universitária, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Spatial-Monthly Variations and Influencing Factors of Dissolved Oxygen in Surface Water of Zhanjiang Bay, China. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8060403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dissolved oxygen (DO) is one of the most important factors for maintaining a healthy marine ecosystem. The information of DO in large estuaries or bays with large entrances has been widely studied, while it is relatively limited for a bay with a narrow entrance which is vulnerable to human activities. The Zhanjiang Bay, located in the northwestern South China Sea, has a very narrow entrance and suffers from strong anthropogenic activities and obvious seasonal variations in environmental parameters. In this study, we analyzed the spatial and monthly variations of DO, apparent oxygen utilization (AOU), percent oxygen saturation (DO-saturation), and related environmental parameters in the surface water of Zhanjiang Bay to find out the factors controlling the dynamics of DO. Different from many other coastal ecosystems, DO concentrations in the Zhanjiang Bay reached minimum values in late spring and early autumn. The phytoplankton bloom in summer months, which was related to the high concentrations of nutrients brought by rainfall-induced terrestrial inputs, contributed to that phenomenon. Though high chlorophyll a (Chl a) concentrations were observed in both the summer months and December, the DO-saturation values were relatively low and AOU values were relatively high in summer months. Rainfall-induced terrestrial discharge in summer months, which had high concentrations of chemical oxygen demand, contributed much to that phenomenon. The average DO concentrations and DO-saturation values in a hydrological year decreased seaward, and AOU values increased seaward, indicating the anthropogenic influence from terrestrial input. The highest annual average Chl a concentration, relatively high annual average DO-saturation value and relatively low annual AOU value were observed near the Donghai Dam. This indicated that the construction of Donghai Dam has significant influences on the environment of Zhanjiang Bay.
Collapse
|
14
|
A Novel Procedure of Total Organic Carbon Analysis for Water Samples Containing Suspended Solids with Alkaline Extraction and Homogeneity Evaluation by Turbidity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113901. [PMID: 32486395 PMCID: PMC7311996 DOI: 10.3390/ijerph17113901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022]
Abstract
This study was conducted to develop and validate a more reliable total organic carbon (TOC) analytical procedure for water samples containing suspended solids (SS). The effects of the combined ultrasonic and alkaline pretreatment (CULA) on the TOC measurement were studied in water samples containing SS from three origins (algae, sewage particles, and soil) under different analytical conditions (SS concentration, oxidation methods, and sieve size). The applicability of turbidity as a homogeneity index was also evaluated. With CULA, TOC recovery remained high (> 80%) for SS concentration ranges up to four times larger than ultrasonic pretreatment alone (UL) due to enhanced particulate organic carbon (POC) solubilization, and did not significantly differ depending on the oxidation methods, at low SS concentrations, or with varying sieve sizes. In particular, the turbidity change rate (i.e., NTU5/NTU0) of the pretreated water sample showed a high correlation with TOC precision (r2 = 0.73, p < 0.01), which suggests that turbidity can be used as an indicator of sample homogeneity. A novel TOC analytical procedure is expected to be useful for more accurate assessments of the impact of particulate pollutants on water quality than current methods, and for the analysis of the carbon cycle, including POCs, in the environment.
Collapse
|