Spatial calibration and PM
2.5 mapping of low-cost air quality sensors.
Sci Rep 2020;
10:22079. [PMID:
33328536 PMCID:
PMC7745024 DOI:
10.1038/s41598-020-79064-w]
[Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
The data quality of low-cost sensors has received considerable attention and has also led to PM2.5 warnings. However, the calibration of low-cost sensor measurements in an environment with high relative humidity is critical. This study proposes an efficient calibration and mapping approach based on real-time spatial model. The study carried out spatial calibration, which automatically collected measurements of low-cost sensors and the regulatory stations, and investigated the spatial varying pattern of the calibrated low-cost sensor data. The low-cost PM2.5 sensors are spatially calibrated based on reference-grade measurements at regulatory stations. Results showed that the proposed spatial regression approach can explain the variability of the biases from the low-cost sensors with an R-square value of 0.94. The spatial calibration and mapping algorithm can improve the bias and decrease to 39% of the RMSE when compared to the nonspatial calibration model. This spatial calibration and real-time mapping approach provide a useful way for local communities and governmental agencies to adjust the consistency of the sensor network for improved air quality monitoring and assessment.
Collapse