1
|
Zheng H, Du X, Ma Y, Zhao W, Zhang H, Yao J, Shi Y, Zhao C. Combined assessment of health hazard and odour impact of soils at a contaminated site: a case study on a defunct pharmaceuticals factory in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7679-7692. [PMID: 37410198 DOI: 10.1007/s10653-023-01678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Surveys and assessments of contaminated sites primarily focus on hazardous pollutants in the soil with less attention paid to odorants. This makes the management of contaminated sites difficult. In this study, hazardous and odorous pollutants in the soil were assessed for a large site that was previously used for production of pharmaceuticals to determine the degree and characteristics of soil contamination at pharmaceutical production sites, for undertaking rational remediation measures. The main hazardous pollutants at the study site were triethylamine, n-butyric acid, benzo(a)pyrene (BaP), N-nitrosodimethylamine (NDMA), dibenzo(a,h)anthracene (DBA), total petroleum hydrocarbons (C10-C40) (TPH), and 1,2-dichloroethane; TEA, BA, and isovaleric acid (IC) were the main odorants. As the type and distribution of hazardous and odorous pollutants differ, it is necessary to separately assess the impact of these pollutants at a contaminated site. Soils in the surface layer pose significant non-carcinogenic (HI = 68.30) and carcinogenic risks (RT = 3.56E-5), whereas those in the lower layer only pose non-carcinogenic risks (HI > 7.43). Odorants were found at considerable concentrations both in the surface and lower layers, with the maximum concentrations being 29,309.91 and 41.27, respectively. The findings of this study should improve our understanding of soil contamination at former pharmaceutical production sites and should inform the assessment of the risks posed by contaminated sites, with problems associated with odour, and possible remediation strategies.
Collapse
Affiliation(s)
- Hongguang Zheng
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
- School of Chemical and Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, China
| | - Xiaoming Du
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining & Technology-Beijing, Beijing, 100083, China
| | - Weiguang Zhao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Hailing Zhang
- Hebei Zongda Environmental Technology Co., LTD, Shijiazhuang, 050000, Hebei, China
| | - Juejun Yao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Yi Shi
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Caiyun Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|