1
|
Bendig S, Marín-García PJ, Lesta A, Ramos JJ, Ruvira G, Llobat L. Myostatin serum levels depends on age and diet in athletic and no athletic dogs. Vet J 2024; 307:106207. [PMID: 39053842 DOI: 10.1016/j.tvjl.2024.106207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Myostatin is a growth factor related to muscular mass atrophy via mTOR pathway inhibition. Mutations in this gene have been correlated with high muscular mass development in different species of mammals, including human and dogs. Different studies have shown that sport practice increases myostatin gene expression. Some of them were conducted in canine breeds selected for different sport practices, including mushing sports. In this study, body weight, muscular mass, and serum levels of myostatin were analysed in different canine breeds, selected, and not selected for sprint and middle-distance racing, and the effect on epidemiological factors was evaluated. Sex, reproductive status, and canine breed affects body weight and muscular mass, being higher in males, and in sled canine breed. Age has an effect in body weight and myostatin serum levels, being lower in elder dogs. Sport practice and type of diet had an effect in muscular mass development but not in myostatin serum levels. Results showed a high positive correlation between muscular mass and body weight but not with myostatin levels. These results suggest that independent-myostatin mechanisms of mTOR pathway regulation could be related to muscular mass development in dogs.
Collapse
Affiliation(s)
- Sandra Bendig
- Molecular Mechanisms of Zoonotic Diseases (MMOPS) Research group, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia 46113, Spain
| | - Pablo Jesús Marín-García
- Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia 46113, Spain
| | - Ana Lesta
- Molecular Mechanisms of Zoonotic Diseases (MMOPS) Research group, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia 46113, Spain
| | - Juan José Ramos
- Molecular Mechanisms of Zoonotic Diseases (MMOPS) Research group, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia 46113, Spain
| | - Guillem Ruvira
- Molecular Mechanisms of Zoonotic Diseases (MMOPS) Research group, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia 46113, Spain
| | - Lola Llobat
- Molecular Mechanisms of Zoonotic Diseases (MMOPS) Research group, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia 46113, Spain.
| |
Collapse
|
2
|
Letukienė A, Hendrixson V, Ginevičienė V. Current knowledge and scientific trends in myokines and exercise research in the context of obesity. Front Med (Lausanne) 2024; 11:1421962. [PMID: 39376657 PMCID: PMC11456489 DOI: 10.3389/fmed.2024.1421962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
The relationship between exercise and obesity has attracted increasing attention from researchers worldwide in recent years. The aim of the present study was to analyze the current knowledge and scientific trends of research into myokines and exercise in the context of obesity and provide ideas for future research strategies to prevent obesity. The study conducted a comprehensive bibliometric analysis of 300 scientific publications related to myokines, exercise, and obesity from 2004 to 2024. Applying the VOSviewer tool, the analysis revealed a significant increase over time in the number of publications on these topics, with a total of 1,142 related keywords identified. Key themes identified in the analysis included molecular processes, new organokines, skeletal muscle research, model organism studies, and human studies based on sex and age differences. The study highlighted the growing interest in the molecular mechanisms of obesity and role of myokines. Results showed a substantial increase in publications from 2014 to 2024, with a focus on new organokines (myokines, adipokines) and animal models. The analysis underscored the importance of myokines in modulating metabolic processes and their potential therapeutic implications in managing non-communicable diseases such as obesity. Furthermore, the study revealed the close relationship between exercise, myokine production, and regulation of metabolism, stress response, and inflammation. In conclusion, over the last years, increasing research interest has been focused on the molecular mechanisms of obesity and benefits of exercise, and probably will be focused on a set of myokines released during muscle contraction. A newly identified myokines has emerged as a promising marker for the prevention and control of obesity.
Collapse
|
3
|
Szűcs G, Pipicz M, Szabó MR, Csont T, Török L, Csonka C. Effect of Eccentric Exercise on Metabolic Health in Diabetes and Obesity. SPORTS MEDICINE - OPEN 2023; 9:91. [PMID: 37775653 PMCID: PMC10541389 DOI: 10.1186/s40798-023-00596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/12/2023] [Indexed: 10/01/2023]
Abstract
There is a growing body of evidence showing the importance of physical activity against civilization-induced metabolic diseases, including type 2 diabetes (T2DM) and obesity. Eccentric contraction, when skeletal muscles generate force by lengthening, is a unique type of skeletal muscle activity. Eccentric contraction may lead to better power production characteristics of the muscle because eccentric contraction requires less energy and can result in higher tension. Therefore, it is an ideal tool in the rehabilitation program of patients. However, the complex metabolic effect (i.e., fat mass reduction, increased lipid oxidation, improvement in blood lipid profile, and increased insulin sensitivity) of the eccentric contraction alone has scarcely been investigated. This paper aims to review the current literature to provide information on whether eccentric contraction can influence metabolic health and body composition in T2DM or obesity. We also discussed the potential role of myokines in mediating the effects of eccentric exercise. A better understanding of the mechanism of eccentric training and particularly their participation in the regulation of metabolic diseases may widen their possible therapeutic use and, thereby, may support the fight against the leading global risks for mortality in the world.
Collapse
Affiliation(s)
- Gergő Szűcs
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary
| | - Márton Pipicz
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary
| | - Márton Richárd Szabó
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary
| | - László Török
- Department of Traumatology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, Szeged, 6720, Hungary
- Department of Sports Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Tisza Lajos krt. 107, Szeged, 6720, Hungary
| | - Csaba Csonka
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
- Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, 6720, Szeged, Hungary.
- Department of Sports Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Tisza Lajos krt. 107, Szeged, 6720, Hungary.
| |
Collapse
|
4
|
Willoughby DS, Cardaci TD, Machek SB, Wilburn DT, Heileson JL. Resistance Exercise-Induced Increases in Muscle Myostatin mRNA and Protein Expression Are Subsequently Decreased in Circulation in the Presence of Increased Levels of the Extracellular Matrix Stabilizing Protein Decorin. J Sports Sci Med 2022; 21:616-624. [PMID: 36523894 PMCID: PMC9741719 DOI: 10.52082/jssm.2022.616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Resistance exercise (RE) activates cell signaling pathways associated with myostatin. Decorin is located in the extracellular matrix (ECM) and can block the inhibitory effect of myostatin. This study sought to determine the impact of low-load (LL) and high-load (HL) RE on myostatin mRNA and protein expression along with changes in muscle decorin and circulating follistatin. Ten resistance-trained men performed a LL (50% 1RM) and HL (80% 1RM) RE session using the angled leg press and leg extension with load and volume equated. Venous blood samples and muscle biopsies were obtained prior to and at 3h and 24h following each RE session. Muscle myostatin mRNA expression was increased at 24h post-exercise (p = 0.032) in LL and at 3h (p = 0.044) and 24h (p = 0.003) post-exercise in HL. Muscle decorin was increased at 24h post-exercise (p < 0.001) in LL and HL; however, muscle myostatin was increased at 24h post-exercise (p < 0.001) only in HL. For muscle Smad 2/3, no significant differences were observed (p > 0.05). Serum follistatin was increased and myostatin decreased at 24h post-exercise (p < 0.001) in LL and HL. Muscle myostatin gene and protein expression increased in response to HL RE. However, serum myostatin was decreased in the presence of increases in decorin in muscle and follistatin in circulation. Therefore, our data suggest a possible mechanism may exist where decorin within the ECM is able to bind to, and decrease, myostatin that might otherwise enter the circulation for activin IIB (ACTIIB) receptor binding and subsequent canonical signaling through Smad 2/3.
Collapse
Affiliation(s)
- Darryn S. Willoughby
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA, Department of Health and Human Performance, Baylor University, Waco, TX, USA, School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | - Thomas D. Cardaci
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Steven B. Machek
- Department of Kinesiology, California State University Monterey Bay, Seaside, CA, USA
| | - Dylan T. Wilburn
- Department of Health and Human Performance, Baylor University, Waco, TX, USA
| | - Jeffery L. Heileson
- Nutrition Services Division, Walter Reed National Military Medical Center, Bethesda, MD, USA
| |
Collapse
|
5
|
Haq A, Ribbans WJ, Hohenauer E, Baross AW. The Effect of Repetitive Whole Body Cryotherapy Treatment on Adaptations to a Strength and Endurance Training Programme in Physically Active Males. Front Sports Act Living 2022; 4:834386. [PMID: 35399598 PMCID: PMC8990227 DOI: 10.3389/fspor.2022.834386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Despite its potential merit in sport and exercise recovery, the implications of repetitive Whole Body Cryotherapy (WBC) during training programmes require further review due to the possibility of repetitive cold interfering with long term adaptations. This study investigated the impact of two weekly 3 min WBC sessions (30 s at −60°C, 150 s at −120°C) on adaptations to a 6 week strength and endurance training programme. Sixteen male participants (mean ± SD age 33.4 ± 9.8 years, body mass 82.3 ± 9.8 kg) randomly allocated into WBC (n = 7) and non-cryotherapy control (CON, n=9) groups completed the programme consisting of two weekly strength and plyometric training sessions and two weekly 30 min runs (70% VO2 max). Participants were assessed for body fat, VO2 max, muscle torque, three repetition maximum barbell squat and countermovement jump height before and after the programme. Resistance and running intensities were progressed after 3 weeks. Participants in both groups significantly improved muscle torque (WBC: 277.1 ± 63.2 Nm vs. 318.1 ± 83.4 Nm, p < 0.01, d = 0.56; CON: 244.6 ± 50.6 Nm vs. 268.0 ± 71.8 Nm, p = 0.05, d = 0.38) and barbell squat (WBC: 86.4 ± 19.5 kg vs. 98.9 ± 15.2 kg, p = 0.03, d = 0.69; CON: 91.1 ± 28.7 kg vs. 106.1 ± 30.0 kg, p < 0.01, d=0.51) following the 6 week programme. For the CON group, there was also a significant reduction in body fat percentage (p = 0.01) and significant increase in jump height (p = 0.01). There was no significant increase in VO2 max for either group (both p > 0.2). There was no difference between WBC and CON for responses in muscle torque, 3RM barbell squat and body fat, however WBC participants did not increase their jump height (p = 0.23). Repetitive WBC does not appear to blunt adaptations to a concurrent training programme, although there may be an interference effect in the development of explosive power. Sports practitioners can cautiously apply repetitive WBC to support recovery post-exercise without undue concern on athletes' fitness gains or long term performance, particularly throughout training phases focused more on general strength development than explosive power.
Collapse
Affiliation(s)
- Adnan Haq
- Sports Studies, Moulton College, Moulton, United Kingdom
- Sport and Exercise Science, University of Northampton Waterside, Northampton, United Kingdom
- School of Health, Sport and Professional Practice, University of South Wales Sport Park, Pontypridd, United Kingdom
- *Correspondence: Adnan Haq
| | - William J. Ribbans
- Sport and Exercise Science, University of Northampton Waterside, Northampton, United Kingdom
- The County Clinic, Northampton, United Kingdom
| | - Erich Hohenauer
- Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
| | - Anthony W. Baross
- Sport and Exercise Science, University of Northampton Waterside, Northampton, United Kingdom
| |
Collapse
|
6
|
Bouzigon R, Dupuy O, Tiemessen I, De Nardi M, Bernard JP, Mihailovic T, Theurot D, Miller ED, Lombardi G, Dugué BM. Cryostimulation for Post-exercise Recovery in Athletes: A Consensus and Position Paper. Front Sports Act Living 2021; 3:688828. [PMID: 34901847 PMCID: PMC8652002 DOI: 10.3389/fspor.2021.688828] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Recovery after exercise is a crucial key in preventing muscle injuries and in speeding up the processes to return to homeostasis level. There are several ways of developing a recovery strategy with the use of different kinds of traditional and up-to-date techniques. The use of cold has traditionally been used after physical exercise for recovery purposes. In recent years, the use of whole-body cryotherapy/cryostimulation (WBC; an extreme cold stimulation lasting 1-4 min and given in a cold room at a temperature comprised from -60 to -195°C) has been tremendously increased for such purposes. However, there are controversies about the benefits that the use of this technique may provide. Therefore, the main objectives of this paper are to describe what is whole body cryotherapy/cryostimulation, review and debate the benefits that its use may provide, present practical considerations and applications, and emphasize the need of customization depending on the context, the purpose, and the subject's characteristics. This review is written by international experts from the working group on WBC from the International Institute of Refrigeration.
Collapse
Affiliation(s)
- Romain Bouzigon
- Université de Franche-Comté, UFR STAPS Besançon, Laboratoire C3S (EA4660), Axe Sport Performance, Besançon, France
- Society Inside the Athletes 3.0, Sport Performance Optimization Complex (COPS25), Besançon, France
- Society Aurore Concept, Noisiel, France
| | - Olivier Dupuy
- Université de Poitiers, Laboratoire MOVE (EA 6314), Faculté des Sciences du Sport, Poitiers, France
- Ecole de Kinésiologie et des Sciences de l'Actvivité Physique (EKSAP), Faculté de Medecine, Université de Montreal, Montreal, QC, Canada
| | - Ivo Tiemessen
- ProCcare BVBA, Antwerp, Belgium
- Mobilito Sport, Amsterdam, Netherlands
| | - Massimo De Nardi
- Krioplanet Ltd, Treviglio, Italy
- Department of Experimental Medicine, Università Degli Studi di Genova, Genoa, Italy
| | - Jean-Pierre Bernard
- Air Liquide Group International Expert in Cryogenic Applications Cryolor, Ennery, France
| | - Thibaud Mihailovic
- Université de Franche-Comté, UFR STAPS Besançon, Laboratoire C3S (EA4660), Axe Sport Performance, Besançon, France
- Society Inside the Athletes 3.0, Sport Performance Optimization Complex (COPS25), Besançon, France
| | - Dimitri Theurot
- Université de Poitiers, Laboratoire MOVE (EA 6314), Faculté des Sciences du Sport, Poitiers, France
| | | | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Benoit Michel Dugué
- Université de Poitiers, Laboratoire MOVE (EA 6314), Faculté des Sciences du Sport, Poitiers, France
| |
Collapse
|
7
|
Beneficial effects of whole-body cryotherapy on glucose homeostasis and amino acid profile are associated with a reduced myostatin serum concentration. Sci Rep 2021; 11:7097. [PMID: 33782504 PMCID: PMC8007810 DOI: 10.1038/s41598-021-86430-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/16/2021] [Indexed: 01/12/2023] Open
Abstract
The study investigated the effect of single and chronic (10 sessions) whole-body cryotherapy (WBC; 3-min, − 110 °C) on amino acid (AA) profile, myostatin, fibroblast growth factor 21 (FGF21), and concentrations of brain-derived neurotrophic factor (BDNF), irisin and adiponectin in relation to glucose homeostasis. Thirty-five, healthy men were randomly split into experimental (young: 28 ± 7 years and middle-aged: 51 ± 3 years) and control groups. Blood samples were taken before and 1 h after the first and last (10th) WBC session. Baseline myostatin correlated significantly with visceral fat area, glucose, insulin, HOMA-IR and irisin (all p < 0.05). The single session of WBC induced temporary changes in AA profile, whereas chronic exposure lowered valine and asparagine concentrations (p < 0.01 and p = 0.01, respectively) compared to the baseline. The chronic WBC reduced fasting glucose (p = 0.04), FGF21 (− 35.8%, p = 0.06) and myostatin (-18.2%, p = 0.06). Still, the effects were age-dependent. The decrease of myostatin was more pronounced in middle-aged participants (p < 0.01). Concentrations of irisin and adiponectin increased in response to chronic WBC, while BDNF level remained unchanged. By improving the adipo-myokine profile, chronic WBC may reduce effectively the risk of the metabolic syndrome associated with hyperinsulinemia, increased levels of valine and asparagine, and muscle atrophy.
Collapse
|
8
|
Jaworska J, Laskowski R, Ziemann E, Zuczek K, Lombardi G, Antosiewicz J, Zurek P. The Specific Judo Training Program Combined With the Whole Body Cryostimulation Induced an Increase of Serum Concentrations of Growth Factors and Changes in Amino Acid Profile in Professional Judokas. Front Physiol 2021; 12:627657. [PMID: 33633589 PMCID: PMC7900507 DOI: 10.3389/fphys.2021.627657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/18/2021] [Indexed: 01/17/2023] Open
Abstract
This study aimed to evaluate the effect of a specific training program, supported by 10 sessions of whole body cryostimulation, on growth factors concentrations, amino acids profile and motor abilities in professional judokas. Ultimately, twelve athletes took part in the study. They were randomly assigned to the cryostimulation group (CRY, n = 6) or the control group (CON, n = 6). During 2 weeks of the judo training program, the CRY group performed 10 cryo-sessions (3-min, at a temperature of -110°C) and the CON group rested passively. Anthropometric measurements, a strength test, the Special Judo Efficiency Test (SJET) were assessed 2 days before and after the judo training program. Blood samples were collected at rest, 1 h after the first and the second SJET and 1 h after the first and the last cryo-session to establish growth factors and amino acid concentrations. Lactate level was measured before, immediately after and 1 h after the first and the second SJET. The applied intervention resulted in a significant increase of resting concentrations of brain-derived neurotrophic factor (from 10.23 ± 1.61 to 15.13 ± 2.93 ng⋅ml-1; p = 0.01) and insulin-like growth factor 1 (IGF-1; from 174.29 ± 49.34 to 300.50 ± 43.80 pg⋅ml-1; p = 0.00) in the CRY group. A different response was registered 1 h directly post SJET in the CRY group (a significant increase of IGF-1, interleukin 15 and irisin: p = 0.01; p = 0.00; p = 0.03). Additionally, the significant drop of proline and leucine concentrations in the CRY group was obtained. Athletes' performance remained unchanged in both groups. However, subjects perceived positive changes induced by the intervention - not directly after cryostimulation but in response to the specific training workload. The increase of growth factors concentrations and the improvement of amino acid profile (proline and leucine) contributed to maintaining a high level of muscle function.
Collapse
Affiliation(s)
- Joanna Jaworska
- Department of Physical Education and Lifelong Sports, Poznań University of Physical Education, Poznań, Poland
| | - Radoslaw Laskowski
- Department of Physiology and Biochemistry, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Ewa Ziemann
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| | - Klaudia Zuczek
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Giovanni Lombardi
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland.,IRCCS Galeazzi Orthopaedic Institute, Lab Experimental Biochemistry & Molecular Biology, Milan, Italy
| | - Jedrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Piotr Zurek
- Department of Physical Culture Gorzow Wielkopolski, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
9
|
Śliwicka E, Cisoń T, Pilaczyńska-Szcześniak Ł, Ziemba A, Straburzyńska-Lupa A. Effects of marathon race on selected myokines and sclerostin in middle-aged male amateur runners. Sci Rep 2021; 11:2813. [PMID: 33531538 PMCID: PMC7854637 DOI: 10.1038/s41598-021-82288-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, there has been increasing interest in the homeostatic response to extreme exercises, especially in the integrated function of muscle and bone. The aim of this study was to evaluate the effects of a marathon race on selected myokines and sclerostin in 10 male recreational runners (mean age 41 ± 7.7 years). Body composition, bone mineral density (BMD), and the serum concentration of myostatin, irisin, sclerostin, osteoprotegerin (OPG), 25-hydroxyvitamin D (25(OH)D), parathyroid hormone (PTH), high-sensitivity interleukin-6 (hsIL-6), tumor necrosis factor α (TNFα), high-sensitivity C-reactive protein (hsCRP) and myoglobin, were determined 24 h before and 24 h and 72 h after a marathon race. Post-marathon increases were observed in the levels of myostatin (1.2-fold), OPG (1.5-fold), and PTH (1.3-fold), hsIL-6 (1.9-fold), myoglobin (4.1-fold), hsCRP (fivefold), TNFα (2.6-fold), after 24 h; and in myostatin (1.2-fold), irisin (1.1-fold), sclerostin (1.3-fold), OPG (1.3-fold), and PTH (1.4-fold), hsIL-6 (1.4-fold), TNFα (1.9-fold), after 72 h compared to the baseline level. The results show that in response to the marathon run, a complex network of endocrine interactions is initiated. Further research is needed to fully elucidate the long-term impact of prolonged high intensity exercise on the human body.
Collapse
Affiliation(s)
- Ewa Śliwicka
- Department of Physiology and Biochemistry, Poznan University of Physical Education, Królowej Jadwigi Str. 27/39, 61-871, Poznań, Poland.
| | - Tomasz Cisoń
- Department of Physiotherapy, State University of Applied Science in Nowy Sącz, Nowy Sącz, Poland
| | - Łucja Pilaczyńska-Szcześniak
- Faculty of Rehabilitation and Sport, The President Stanisław Wojciechowski State University of Applied Sciences in Kalisz, Kalisz, Poland
| | - Andrzej Ziemba
- Department of Applied Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Straburzyńska-Lupa
- Department of Physical Therapy and Sports Recovery, Poznan University of Physical Education, Poznań, Poland
| |
Collapse
|