1
|
Borlaza-Lacoste L, Aynul Bari M, Lu CH, Hopke PK. Long-term contributions of VOC sources and their link to ozone pollution in Bronx, New York City. ENVIRONMENT INTERNATIONAL 2024; 191:108993. [PMID: 39278045 DOI: 10.1016/j.envint.2024.108993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Changes in energy and environmental policies along with changes in the energy markets of New York State over the past two decades, have spurred interest in evaluating their impacts on emissions from various energy generation sectors. This study focused on quantifying these effects on VOC (volatile organic compounds) emissions and their subsequent impacts on air quality within the New York City (NYC) metropolitan area. NYC is an EPA nonattainment region for ozone (O3) and likely is a VOC limited region. NYC has a complex coastal topography and meteorology with low-level jets and sea/bay/land breeze circulation associated with heat waves, leading to summertime O3 exceedances and formation of secondary organic aerosol (SOA). To date, no comprehensive source apportionment studies have been done to understand the contributions of local and long-range sources of VOCs in this area. This study applied an improved Positive Matrix Factorization (PMF) methodology designed to incorporate atmospheric dispersion and photochemical reaction losses of VOCs to provide improved apportionment results. Hourly measurements of VOCs were obtained from a Photochemical Assessment Monitoring Station located at an urban site in the Bronx from 2000 to 2021. The study further explores the role of VOC sources in O3 and SOA formation and leverages advanced machine learning tools, XGBoost and SHAP algorithms, to identify synergistic interactions between sources and provided VOC source impacts on ambient O3 concentrations. Isoprene demonstrated a substantial influence in the source contribution of the biogenic factor, emphasizing its role in O3 formation. Notable contributions from anthropogenic emissions, such as fuel evaporation and various industrial processes, along with significant traffic-related sources that likely contribute to SOA formation, underscore the combined impact of natural and human-made sources on O3 pollution. Findings of this study can assist regulatory agencies in developing appropriate policy and management initiatives to control O3 pollution in NYC.
Collapse
Affiliation(s)
- Lucille Borlaza-Lacoste
- Environmental & Sustainable Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 1220 Washington Ave, Albany, NY 12226, USA.
| | - Md Aynul Bari
- Environmental & Sustainable Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 1220 Washington Ave, Albany, NY 12226, USA
| | - Cheng-Hsuan Lu
- Atmosheric Sciences Research Center, University at Albany, State University of New York, Albany, NY 12226, USA; Joint Center for Satellite Data Assimilation, Boulder, CO 80301, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY 13699, USA
| |
Collapse
|
2
|
Mangotra A, Singh SK. Volatile organic compounds: A threat to the environment and health hazards to living organisms - A review. J Biotechnol 2024; 382:51-69. [PMID: 38242502 DOI: 10.1016/j.jbiotec.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/10/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
Volatile organic compounds (VOCs) are the organic compounds having a minimum vapor pressure of 0.13 kPa at standard temperature and pressure (293 K, 101 kPa). Being used as a solvent for organic and inorganic compounds, they have a wide range of applications. Most of the VOCs are non-biodegradable and very easily become component of the environment and deplete its purity. It also deteriorates the water quality index of the water bodies, impairs the physiology of living beings, enters the food chain by bio-magnification and degrades, decomposes and manipulates the physiology of living organisms. To unveil the adverse impacts of volatile organic compounds (VOCs) and their rapid eruption and interference in the living world, a review has been designed. This review presents an insight into the currently available VOCs, their sources, applications, sampling methods, analytic procedures, imposition on the health of aquatic and terrestrial communities and their contamination of the environment. Elaboration has been done on representation of toxicological effects of VOCs on vertebrates, invertebrates, and birds. Subsequently, the role of environmental agencies in the protection of environment has also been illustrated.
Collapse
Affiliation(s)
- Anju Mangotra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, 144411 Punjab, India.
| | - Shailesh Kumar Singh
- School of Agriculture, Lovely Professional University, Jalandhar-Delhi G.T. Road, NH-1, Phagwara, 144411 Punjab, India.
| |
Collapse
|
3
|
Wang J, Li X, Guan F, Yang Z, Zhai X, Zhang Y, Tang X, Duan J, Xiao H. The Isolation of Anaerobic and Facultative Anaerobic Sulfate-Reducing Bacteria (SRB) and a Comparison of Related Enzymes in Their Sulfate Reduction Pathways. Microorganisms 2023; 11:2019. [PMID: 37630579 PMCID: PMC10458228 DOI: 10.3390/microorganisms11082019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Sulfate-reducing bacteria (SRB) are an important group of microorganisms that cause microbial corrosion. In this study, culturable SRB were isolated and identified from the inner rust layer of three kinds of steel and from sediments, and a comparison of amino acid sequences encoding related enzymes in the sulfate reduction pathway between anaerobic and facultative anaerobic SRB strains was carried out. The main results are as follows. (1) Seventy-seven strains were isolated, belonging to five genera and seven species, with the majority being Desulfovibrio marinisediminis. For the first time, Holodesulfovibrio spirochaetisodalis and Acinetobacter bereziniae were separated from the inner rust layer of metal, and sulfate reduction by A. bereziniae, Virgibacillus dokdonensis, and Virgibacillus chiguensis, etc., was also demonstrated for the first time. (2) Three strains of strictly anaerobic bacteria and four strains of facultative anaerobic bacteria were screened from seven bacterial strains. (3) Most of the anaerobic SRB only contained enzymes for the dissimilatory sulfate reduction pathway, while those of facultative anaerobic bacteria capable of producing hydrogen sulfide included two possible ways: containing the related enzymes from the dissimilatory pathway only, or containing enzymes from both dissimilatory and assimilation pathways. This study newly discovered that some bacterial genera exhibit sulfate reduction ability and found that there are differences in the distribution of enzymes related to the sulfate reduction pathway between anaerobic and facultative anaerobic SRB type trains, providing a basis for the development and utilization of sulfate-reducing bacterial resources and furthering our understanding of the metabolic mechanisms of SRB.
Collapse
Affiliation(s)
- Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
| | - Xiaohong Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Fang Guan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266000, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaofan Zhai
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266000, China
| | - Yimeng Zhang
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266000, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laoshan Laboratory, Qingdao 266000, China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China
- Laoshan Laboratory, Qingdao 266000, China
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laoshan Laboratory, Qingdao 266000, China
| |
Collapse
|