1
|
Jones RR. The complexities of PM2.5, greenspace, and childhood cancer. J Natl Cancer Inst 2024; 116:779-781. [PMID: 38641417 PMCID: PMC11160489 DOI: 10.1093/jnci/djae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/21/2024] Open
Affiliation(s)
- Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
2
|
Williams LA, Haynes D, Sample JM, Lu Z, Hossaini A, McGuinn LA, Hoang TT, Lupo PJ, Scheurer ME. PM2.5, vegetation density, and childhood cancer: a case-control registry-based study from Texas 1995-2011. J Natl Cancer Inst 2024; 116:876-884. [PMID: 38366656 DOI: 10.1093/jnci/djae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/05/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Air pollution is positively associated with some childhood cancers, whereas greenness is inversely associated with some adult cancers. The interplay between air pollution and greenness in childhood cancer etiology is unclear. We estimated the association between early-life air pollution and greenness exposure and childhood cancer in Texas (1995 to 2011). METHODS We included 6101 cancer cases and 109 762 controls (aged 0 to 16 years). We linked residential birth address to census tract annual average fine particulate matter <2.5 µg/m³ (PM2.5) and Normalized Difference Vegetation Index (NDVI). We estimated odds ratios (ORs) and 95% confidence intervals (CIs) between PM2.5/NDVI interquartile range increases and cancer. We assessed statistical interaction between PM2.5 and NDVI (likelihood ratio tests). RESULTS Increasing residential early-life PM2.5 exposure was associated with all childhood cancers (OR = 1.10, 95% CI = 1.06 to 1.15), lymphoid leukemias (OR = 1.15, 95% CI = 1.07 to 1.23), Hodgkin lymphomas (OR = 1.27, 95% CI = 1.02 to 1.58), non-Hodgkin lymphomas (OR = 1.24, 95% CI = 1.02 to 1.51), ependymoma (OR = 1.27, 95% CI = 1.01 to 1.60), and others. Increasing NDVI exposure was inversely associated with ependymoma (0- to 4-year-old OR = 0.75, 95% CI = 0.58 to 0.97) and medulloblastoma (OR = 0.75, 95% CI = 0.62 to 0.91) but positively associated with malignant melanoma (OR = 1.75, 95% CI = 1.23 to 2.47) and Langerhans cell histiocytosis (OR = 1.56, 95% CI = 1.07 to 2.28). There was evidence of statistical interaction between NDVI and PM2.5 (P < .04) for all cancers. CONCLUSION Increasing early-life exposure to PM2.5 increased the risk of childhood cancers. NDVI decreased the risk of 2 cancers yet increased the risk of others. These findings highlight the complexity between PM2.5 and NDVI in cancer etiology.
Collapse
Affiliation(s)
- Lindsay A Williams
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Brain Tumor Program, University of Minnesota, Minneapolis, MN, USA
| | - David Haynes
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Jeannette M Sample
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Zhanni Lu
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Ali Hossaini
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Laura A McGuinn
- Department of Family Medicine, University of Chicago, Chicago, IL, USA
| | - Thanh T Hoang
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| | - Philip J Lupo
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| | - Michael E Scheurer
- Department of Pediatrics, Division of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Cancer and Hematology Center, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
3
|
Dai Y, Yin J, Li S, Li J, Han X, Deji Q, Pengcuo C, Liu L, Yu Z, Chen L, Xie L, Guo B, Zhao X. Long-term exposure to fine particulate matter constituents in relation to chronic kidney disease: evidence from a large population-based study in China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:174. [PMID: 38592609 DOI: 10.1007/s10653-024-01949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
The effects of long-term exposure to fine particulate matter (PM2.5) constituents on chronic kidney disease (CKD) are not fully known. This study sought to examine the association between long-term exposure to major PM2.5 constituents and CKD and look for potential constituents contributing substantially to CKD. This study included 81,137 adults from the 2018 to 2019 baseline survey of China Multi-Ethnic Cohort. CKD was defined by the estimated glomerular filtration rate. Exposure concentration data of 7 major PM2.5 constituents were assessed by satellite remote sensing. Logistic regression models were used to estimate the effect of each PM2.5 constituent exposure on CKD. The weighted quantile sum regression was used to estimate the effect of mixed exposure to all constituents. PM2.5 constituents had positive correlations with CKD (per standard deviation increase), with ORs (95% CIs) of 1.20 (1.02-1.41) for black carbon, 1.27 (1.07-1.51) for ammonium, 1.29 (1.08-1.55) for nitrate, 1.20 (1.01-1.43) for organic matter, 1.25 (1.06-1.46) for sulfate, 1.30 (1.11-1.54) for soil particles, and 1.63 (1.39-1.91) for sea salt. Mixed exposure to all constituents was positively associated with CKD (1.68, 1.32-2.11). Sea salt was the constituent with the largest weight (0.36), which suggested its importance in the PM2.5-CKD association, followed by nitrate (0.32), organic matter (0.18), soil particles (0.10), ammonium (0.03), BC (0.01). Sulfate had the least weight (< 0.01). Long-term exposure to PM2.5 sea salt and nitrate may contribute more than other constituents in increasing CKD risk, providing new evidence and insights for PM2.5-CKD mechanism research and air pollution control strategy.
Collapse
Affiliation(s)
- Yucen Dai
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No.17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Kunming, China
- Baoshan College of Traditional Chinese Medicine, Baoshan, China
| | - Sicheng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No.17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Jiawei Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No.17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | - Xinyu Han
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No.17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| | | | - Ciren Pengcuo
- Tibet Center for Disease Control and Prevention CN, Lhasa, China
| | - Leilei Liu
- School of Public Health the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Zhimiao Yu
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Liling Chen
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No.17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No.17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No.17, Section 3, South Renmin Road, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
4
|
Bhattarai G, Shrestha SK, Sim HJ, Lee JC, Kook SH. Effects of fine particulate matter on bone marrow-conserved hematopoietic and mesenchymal stem cells: a systematic review. Exp Mol Med 2024; 56:118-128. [PMID: 38200155 PMCID: PMC10834576 DOI: 10.1038/s12276-023-01149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024] Open
Abstract
The harmful effects of fine particulate matter ≤2.5 µm in size (PM2.5) on human health have received considerable attention. However, while the impact of PM2.5 on the respiratory and cardiovascular systems has been well studied, less is known about the effects on stem cells in the bone marrow (BM). With an emphasis on the invasive characteristics of PM2.5, this review examines the current knowledge of the health effects of PM2.5 exposure on BM-residing stem cells. Recent studies have shown that PM2.5 enters the circulation and then travels to distant organs, including the BM, to induce oxidative stress, systemic inflammation and epigenetic changes, resulting in the reduction of BM-residing stem cell survival and function. Understanding the broader health effects of air pollution thus requires an understanding of the invasive characteristics of PM2.5 and its direct influence on stem cells in the BM. As noted in this review, further studies are needed to elucidate the underlying processes by which PM2.5 disturbs the BM microenvironment and inhibits stem cell functionality. Strategies to prevent or ameliorate the negative effects of PM2.5 exposure on BM-residing stem cells and to maintain the regenerative capacity of those cells must also be investigated. By focusing on the complex relationship between PM2.5 and BM-resident stem cells, this review highlights the importance of specific measures directed at safeguarding human health in the face of rising air pollution.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Saroj Kumar Shrestha
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun-Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
5
|
Nan N, Yan Z, Zhang Y, Chen R, Qin G, Sang N. Overview of PM 2.5 and health outcomes: Focusing on components, sources, and pollutant mixture co-exposure. CHEMOSPHERE 2023; 323:138181. [PMID: 36806809 DOI: 10.1016/j.chemosphere.2023.138181] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 varies in source and composition over time and space as a complicated mixture. Consequently, the health effects caused by PM2.5 varies significantly over time and generally exhibit significant regional variations. According to numerous studies, a notable relationship exists between PM2.5 and the occurrence of many diseases, such as respiratory, cardiovascular, and nervous system diseases, as well as cancer. Therefore, a comprehensive understanding of the effect of PM2.5 on human health is critical. The toxic effects of various PM2.5 components, as well as the overall toxicity of PM2.5 are discussed in this review to provide a foundation for precise PM2.5 emission control. Furthermore, this review summarizes the synergistic effect of PM2.5 and other pollutants, which can be used to draft effective policies.
Collapse
Affiliation(s)
- Nan Nan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Zhipeng Yan
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Yaru Zhang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Chen
- Beijing Key Laboratory of Occupational Safety and Health, Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing, 100054, PR China; Beijing City University, Beijing, 11418, PR China.
| | - Guohua Qin
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| |
Collapse
|
6
|
Smith N, Luethcke KR, Craun K, Trepanier L. Risk of bladder cancer and lymphoma in dogs is associated with pollution indices by county of residence. Vet Comp Oncol 2022; 20:246-255. [PMID: 34480391 PMCID: PMC9969847 DOI: 10.1111/vco.12771] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Human urothelial cell carcinoma (UCC) and non-Hodgkin lymphoma are considered environmental cancers in people, but less is known about environment risk for UCC and lymphoma in dogs. The objective of this study was to determine whether dogs with these cancers, compared to unaffected control dogs, live in counties with higher tap water contaminants or higher levels of air pollution as measured by the Environmental Protection Agency (EPA) and by National Air Toxics Assessment chemical exposure risk estimates. Dogs with available home addresses from two previously published case-control populations were included: 66 dogs with UCC and 70 unaffected controls; and 56 boxer dogs with lymphoma and 84 unaffected boxer controls. Tap water total trihalomethanes, which are water disinfection by-products, were more than threefold higher in UCC case counties of residence compared to controls (p < .0001), and a higher proportion of dogs with UCC lived in counties exceeding EPA ozone limits (41.8%) compared to controls (13.6% p = .0008). More boxers with lymphoma lived in counties exceeding EPA ozone limits (52.1%) compared to controls (29.0%; p = .018), with higher exposure risk estimates for airborne 1,3-butadiene and formaldehyde (p = .004-.005). These data support the hypothesis that tap water contaminants and airborne environmental pollutants contribute to the risk of both urothelial carcinoma and lymphoma in dogs. If these findings reflect causal relationships, then it is possible that tap water filtration units and more effective air pollution controls could decrease the overall incidence of these cancers in dogs.
Collapse
Affiliation(s)
- Natalie Smith
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristofer Ross Luethcke
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kaitlyn Craun
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Trepanier
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Wang Y, Xiao S, Zhang Y, Chang H, Martin RV, Van Donkelaar A, Gaskins A, Liu Y, Liu P, Shi L. Long-term exposure to PM 2.5 major components and mortality in the southeastern United States. ENVIRONMENT INTERNATIONAL 2022; 158:106969. [PMID: 34741960 PMCID: PMC9190768 DOI: 10.1016/j.envint.2021.106969] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Long-term exposure to fine particulate matter (PM2.5) mass has been associated with adverse health effects. However, the health effects of PM2.5 components have been less studied. There is a pressing need to better understand the relative contribution of components of PM2.5, which can lay the scientific basis for designing effective policies and targeted interventions. METHODS We conducted a population-based cohort study, comprising all Medicare enrollees aged 65 or older in the southeastern United States from 2000 to 2016, to explore the associations between long-term exposure to PM2.5 major components and all-cause mortality among the elderly. Based on well-validated prediction models, we estimated ZIP code-level annual mean concentrations for five major PM2.5 components, including black carbon (BC), nitrate (NIT), organic matter (OM), sulfate (SO4), and soil particles. Data were analyzed using Cox proportional hazards models, adjusting for potential confounders. RESULTS The cohort comprised 13,590,387 Medicare enrollees and a total of 107,191,652 person-years. In single-component models, all five major PM2.5 components were significantly associated with elevated all-cause mortality. The hazard ratios (HR) per interquartile range (IQR) increase in exposure were 1.027 (95% CI: 1.025-1.030), 1.012 (95% CI: 1.010-1.013), 1.018 (95% CI: 1.017-1.020), 1.021 (95% CI: 1.017-1.024), and 1.004 (95% CI: 1.003-1.006) for BC, NIT, OM, SO4, and soil particles, respectively. While the effect estimate of soil component was statistically significant, it is much smaller than those of combustion-related components. CONCLUSION Our study provides epidemiological evidence that long-term exposure to major PM2.5 components is significantly associated with elevated mortality.
Collapse
Affiliation(s)
- Yifan Wang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Siyao Xiao
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yuhan Zhang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Howard Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Randall V Martin
- Department of Energy, Environmental & Chemical Engineering, Washington University at St. Louis, MO, USA
| | - Aaron Van Donkelaar
- Department of Energy, Environmental & Chemical Engineering, Washington University at St. Louis, MO, USA; Department of Physics and Atmospheric Science, Dalhousie University, Halix, Nova Scotia, Canada
| | - Audrey Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Pengfei Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Liuhua Shi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Fongsodsri K, Chamnanchanunt S, Desakorn V, Thanachartwet V, Sahassananda D, Rojnuckarin P, Umemura T. Particulate Matter 2.5 and Hematological Disorders From Dust to Diseases: A Systematic Review of Available Evidence. Front Med (Lausanne) 2021; 8:692008. [PMID: 34336895 PMCID: PMC8316685 DOI: 10.3389/fmed.2021.692008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Particulate matter 2.5 (PM2.5) in the air enters the human body by diffusion into the blood. Therefore, hematological abnormalities might occur because of these toxic particles, but few studies on this issue have been reported. According to Cochrane guidance, we performed a systematic review on the relationship between exposure to PM2.5 and the risk of hematological disorders. Ten articles were included in this review. Anemia was found among children and elderly populations with 2- to 5-year PM2.5 exposure. Young children from mothers exposed to air pollution during pregnancy had a higher incidence of leukemia similar to the elderly. Supporting these data, outdoor workers also showed abnormal epigenetic modifications after exposure to very high PM2.5 levels. Adults living in high PM2.5 areas for 2 years were more likely to develop thrombocytosis. Finally, elderly populations with 7- to 8-year PM2.5 exposure showed increased risks of venous thromboembolism. In conclusion, the associations between PM2.5 and hematological aberrations among high-risk people with long-term exposure were reported.
Collapse
Affiliation(s)
- Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supat Chamnanchanunt
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Varunee Desakorn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vipa Thanachartwet
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duangjai Sahassananda
- Information Technology Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Division of Hematology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Tsukuru Umemura
- Department of Medical Technology and Sciences, International University of Health and Welfare, Ohkawa, Japan
| |
Collapse
|