1
|
Waye AA, Ticiani E, Veiga-Lopez A. Chemical mixture that targets the epidermal growth factor pathway impairs human trophoblast cell functions. Toxicol Appl Pharmacol 2024; 483:116804. [PMID: 38185387 PMCID: PMC11212468 DOI: 10.1016/j.taap.2024.116804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Pregnant women are exposed to complex chemical mixtures, many of which reach the placenta. Some of these chemicals interfere with epidermal growth factor receptor (EGFR) activation, a receptor tyrosine kinase that modulates several placenta cell functions. We hypothesized that a mixture of chemicals (Chem-Mix) known to reduce EGFR activation (polychlorinated biphenyl (PCB)-126, PCB-153, atrazine, trans-nonachlor, niclosamide, and bisphenol S) would interfere with EGFR-mediated trophoblast cell functions. To test this, we determined the chemicals' EGFR binding ability, EGFR and downstream effectors activation, and trophoblast functions (proliferation, invasion, and endovascular differentiation) known to be regulated by EGFR in extravillous trophoblasts (EVTs). The Chem-Mix competed with EGF for EGFR binding, however only PCB-153, niclosamide, trans-nonachlor, and BPS competed for binding as single chemicals. The effects of the Chem-Mix on EGFR phosphorylation were tested by exposing the placental EVT cell line, HTR-8/SVneo to control (0.1% DMSO), Chem-Mix (1, 10, or 100 ng/ml), EGF (30 ng/ml), or Chem-Mix + EGF. The Chem-Mix - but not the individual chemicals - reduced EGF-mediated EGFR phosphorylation in a dose dependent manner, while no effect was observed in its downstream effectors (AKT and STAT3). None of the individual chemicals affected EVT cell invasion, but the Chem-Mix reduced EVT cell invasion independent of EGF. In support of previous studies that have explored chemicals targeting a specific pathway (estrogen/androgen receptor), current findings indicate that exposure to a chemical mixture that targets the EGFR pathway can result in a greater impact compared to individual chemicals in the context of placental cell functions.
Collapse
Affiliation(s)
- Anita A Waye
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Elvis Ticiani
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA; The Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Wang M, Zhou M, Tan Q, Yu L, Dong C, Liang R, Liu W, Zhang Y, Li M, Nie X, Jing T, Chen W. Triazine herbicides exposure, natural immunoglobulin M antibodies, and fasting plasma glucose changes: Association and mediation analyses in general Chinese urban adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121833. [PMID: 37201570 DOI: 10.1016/j.envpol.2023.121833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 04/18/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023]
Abstract
The effects of triazine herbicides on glucose metabolism remain unclear. In this study, we aimed to assess the associations between serum triazine herbicides and glycemia-related risk indicators in general adults, and to evaluate the mediating role of natural immunoglobulin M antibodies (IgM) in the above associations among uninfected participants. We measured the concentrations of atrazine, cyanazine, and IgM in serum, as well as fasting plasma glucose (FPG), and fasting plasma insulin in 4423 adult participants from the Wuhan-Zhuhai cohort baseline population, enrolled in 2011-2012. Generalized linear models were used to evaluate the associations of serum triazine herbicides with glycemia-related risk indicators, and mediation analyses were performed to evaluate the mediating role of serum IgM in the above associations. The median levels of serum atrazine and cyanazine were 0.0237 μg/L and 0.0786 μg/L, respectively. Our study found significant positive associations of serum atrazine, cyanazine, and Σtriazine with FPG levels, risk of impaired fasting glucose (IFG), abnormal glucose regulation (AGR), and type 2 diabetes (T2D). Additionally, serum cyanazine and Σtriazine were found to be significant positive associated with the homeostatic model assessment of insulin resistance (HOMA-IR) levels. Significant negative linear relationships were observed in associations of serum IgM with serum triazine herbicides, FPG, HOMA-IR levels, the prevalence of T2D, and AGR (P < 0.05). Furthermore, we observed a significant mediating role by IgM in the associations of serum triazine herbicides with FPG, HOMA-IR, and AGR, with the proportions ranging from 2.96% to 7.71%. To ensure the stability of our findings, we conducted sensitivity analyses in normoglycemic participants and found that the association of serum IgM with FPG and the mediating role by IgM remained stable. Our results suggest that triazine herbicides exposure is positively associated with abnormal glucose metabolism, and decreasing serum IgM may partly mediate these associations.
Collapse
Affiliation(s)
- Mengyi Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qiyou Tan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Linling Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chaoqian Dong
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ruyi Liang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yongfang Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Minjing Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - XiuQuan Nie
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Tao Jing
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
3
|
Alimzhanova M, Mamedova M, Ashimuly K, Alipuly A, Adilbekov Y. Miniaturized solid-phase microextraction coupled with gas chromatography-mass spectrometry for determination of endocrine disruptors in drinking water. Food Chem X 2022; 14:100345. [PMID: 35663598 PMCID: PMC9156867 DOI: 10.1016/j.fochx.2022.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/11/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mereke Alimzhanova
- al-Farabi Kazakh National University, Faculty of Physics and Technology, 71 al-Farabi Ave., 050040 Almaty, Kazakhstan
- Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 050012 Almaty, Kazakhstan
- Corresponding author.
| | - Madina Mamedova
- al-Farabi Kazakh National University, Faculty of Physics and Technology, 71 al-Farabi Ave., 050040 Almaty, Kazakhstan
- Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 050012 Almaty, Kazakhstan
| | - Kazhybek Ashimuly
- Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 050012 Almaty, Kazakhstan
| | - Alham Alipuly
- Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 050012 Almaty, Kazakhstan
| | - Yerlan Adilbekov
- Center of Physical Chemical Methods of Research and Analysis, al-Farabi Kazakh National University, 050012 Almaty, Kazakhstan
| |
Collapse
|