Morel LL, Almeida MVRD, Santos KMD, Praseres MF, Gonçalves Girundi AL, Alexandrino LD, Silva WJD. Reinforcement of 3D-printed resins for denture base by adding aramid fibers: Effect on mechanical, surface, and optical properties.
J Prosthodont 2024. [PMID:
39318098 DOI:
10.1111/jopr.13957]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/29/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024] Open
Abstract
PURPOSE
The present study evaluated the mechanical, surface, and optical properties of 3D-printed resins for removable prostheses reinforced by the addition of aramid fibers.
MATERIALS AND METHODS
According to ISO 20795-1:2013 standards, specimens were printed using a digital light processing 3D printer and divided into two groups (n = 06/group): 3D-printed resin for denture base as the control group, and a group with the same 3D-printed resin in addition of 5% aramid fibers as the experimental group. Red aramid fibers were chosen for aesthetic characterization. The specimens were evaluated for their mechanical properties, such as elastic modulus (GPa), flexural strength (MPa), and superficial properties by their surface microhardness (KHN), surface roughness (μm), and surface free energy (mJ/m2). Optical properties were evaluated by the color difference (∆E00) between groups. The statistical test chosen after the exploratory analysis of the data was One-way ANOVA followed by Tukey's HSD (α = 0.05).
RESULTS
The results showed statistical differences in elastic modulus (p < 0.0001), flexural strength (p < 0.0001), surface free energy polar variable (p = 0.0322), total surface free energy (p = 0.0344), with higher values for the experimental. Surface hardness and surface roughness showed no statistical difference (p ≥ 0.05). The color difference (∆E00) obtained through the CIEDE2000 calculus was below the perceptibility threshold (≤1.1).
CONCLUSION
Adding aramid fibers to 3D-printed resin for denture bases resulted in better mechanical properties, without major alterations in surface properties. In addition, it is an easy-to-apply choice for mechanical reinforcement and aesthetic characterization, with the expression of small blood vessels in the 3D-printed resin for removable denture bases.
Collapse